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ABSTRACT

The work reported here is for a study that aimed to: (1) evaluate the concordance between
internally observable variable (IOV) based and externally observable variable (EOV) based
predictors of engine power demand; (2) develop predictive models for vehicle energy use and
emissions (EU&E) based on 10Vs; (3) evaluate models for vehicle EU&E based on 10Vs by
comparing to models based on EOVs; and (4) implement the new predictive models for emissions
and fuel use based on IOV’s into SwashSim, a traffic microsimulation software program Based
on this research, predictive models for vehicle EU&E are evaluated and recommendations are
offered regarding choices among these models. The implementation of the IOV-based models into
SwashSim demonstrates how this capability can be added to any microscopic traffic simulation
tool.

xii
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Part I: Introduction

Background

Transportation accounts for 28% of all U.S. energy use (U.S. EIA, 2015). Highway transportation
accounts for 32% of national annual emissions of nitrogen oxides (NOx), 50% of carbon monoxide
(CO), and 22% of volatile organic compounds (VOC) (U.S. EPA, 2015). This increasing concern
regarding air quality has motivated the need for accurate estimates of micro-scale vehicle EU&E.
This is especially important because of the increasing need to assess the environmental
effectiveness of traffic management and operation strategies such as ramp metering, managed
lanes, speed harmonization, and even connected vehicle systems on EU&E (Washburn et al.,
2013).

Vehicle fuel use and emission rates are related to vehicle specific power (VSP) (Frey et al.,
2008). VSP accounts for changes in vehicle kinetic and potential energy, rolling resistance, and
aerodynamic drag (Jimenez-Palacios, 1999). For a given vehicle, VSP is a function of vehicle
speed, acceleration, and grade.

Frey et al. (2010) conducted a detailed evaluation of the explanatory power and goodness-
of-fit of 14 alternative modeling approaches for predicting vehicle EU&E based on use of EOVs
compared with 10Vs. An EOV can be observed from outside of a vehicle. Examples include
vehicle speed, vehicle acceleration, and road grade. An IOV can be observed from inside a vehicle.
Examples include manifold absolute pressure (MAP), engine speed in revolutions per minute
(RPM), and others. Many IOVs are reported by a vehicle electronic control unit (ECU) via an on-
board diagnostic (OBD) interface. Such IOVs can be recorded in real time using an OBD
“scantool.” Tailpipe emission rates were measured using a portable emission measurement system
(PEMS). Models of fuel use and emission rates based on engine data, such as MAP and RPM, are
more predictive than those based only on VSP (Frey et al., 2010).

Although VSP-based models are now widely used and offer significant explanatory power
for fuel use and emission rates, models based directly on OBD data have the potential for better
goodness-of-fit. For example, a VSP-based model for fuel use rate for a 2005 Chevrolet Cavalier
had a coefficient of determination (R?) of 0.87. However, an IOV model based on Pmxr, Which is
the product of MAP and RPM, had a higher R? of 0.99 (Frey et al., 2010). Such improvement was
expected, since the MAP and RPM are significant factors affecting fuel injection control and thus,
are indicators of engine power demand (Heywood, 1998). Therefore, the direct use of IOVs based
on OBD data may lead to improved estimates of vehicle fuel use and emission rates. However,
tailpipe emission rates are also significantly influenced by the operational efficiency of the
catalytic converter, for which the effect was not quantified (Frey et al., 2010). Models for emission
rates of specific pollutants based on 10Vs may have an R? not as good as for fuel use. The latter
is not significantly influenced by the catalytic converter.
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There is increasing interest in developing applications that use OBD data. In-vehicle data
collection for proof-of-concept and feasibility assessment can be costly. There is growing demand
for a traffic simulation platform that enables developers to test and evaluate products and for an
improved method for quantifying EU&E to support transportation planning. A traffic simulation
tool that is capable of using EU&E models based on I0Vs would be of significant benefit to the
transportation and environmental engineering communities. Historically, such tools determine
vehicle acceleration rates through relatively simple methods that do not involve knowing the status
of the vehicle power/drivetrain (McTrans, 2012). Concurrently, Washburn is developing a new
traffic microsimulation program that explicitly models the power/drivetrain components of
vehicles and thus can utilize 10V-based EU&E models. Furthermore, emission rate models based
on 10Vs could, in the future, be incorporated into vehicle electronic control units (ECU) to enable
provision of feedback to drivers regarding how vehicle operation affects emissions. The
integration of OBD data into vehicle fuel use and emission models provides more capabilities for
predicting EU&E based on vehicle activity.

This report describes the development of models for estimating vehicle fuel use and
emission rates based on 10Vs that can be obtained from OBD data, and to demonstrate that IOV
parameters can provide estimates of engine power demand consistent with the VSP approach based
on EOVs. In addition, this work is intended to evaluate the performance of models for estimating
vehicle fuel use and emission rates based on 10Vs, such as Puxr, compared to models based on
EOVs, such as VSP. Additionally, this report describes the implementation of this I0OV-based
approach for estimating EU&E into a traffic microsimulation program. This implementation
approach can be used as a model for other traffic microsimulation programs.

Objectives

The specific research objectives are to: (1) evaluate the concordance between IOV- and EOV-
based predictors of engine power demand; (2) develop predictive models for vehicle EU&E based
on 10Vs; (3) evaluate models for vehicle EU&E based on I0Vs by comparing to models based on
EOVs; and (4) implement the new predictive models for emissions and fuel use based on IOV’s
into SwashSim, a traffic microsimulation software program.

Scope

The scope of work completed includes the following:

» Measurements were made for fuel use, CO2, CO, HC, and NOx.

« Measurements were made on ten selected light-duty gasoline vehicles, including six
passenger cars (PCs) and four passenger trucks (PTs).

» |OV- and EOV-based predictive models were developed for fuel use and emissions of
CO, HC, and NOx for each of the ten selected vehicles.
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« Typically less than five percent of total data collected were excluded after quality
assurance screening.

 Incorporation of test vehicles into a traffic microsimulation program, SwashSim. This
includes characteristics such as dimensions, drive/powertrain details, and EU&E 10V-
based models.

The work here focused on specific light-duty gasoline vehicles, and thus did not include a variety
of other types of vehicles in the United States.
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Part II: Development of Vehicle-Specific Fuel Use and Emissions Models
Based on Internally Observable Activity Data

Method

Measurements and modeling were made on ten light-duty gasoline vehicles. The methodology
includes study design, instruments, data collection, quality assurance and quality check, and data
analysis.

Study Design

Field measurements of 10 light-duty gasoline vehicles have been conducted, including 6 passenger
cars (PCs) and 4 passenger trucks (PTs). The selected vehicles vary by age, mileage, and engine
displacement. Specifications of the selected vehicles are shown in Table 2-1. On average, the 4
PTs have 80% higher engine displacement, 70% higher curb weight, and 30% lower rated
combined fuel economy compared to the 6 PCs.

For each vehicle, data were collected based on 110 miles of driving on four routes in the
Raleigh, NC and Research Triangle Park, NC area, which is shown in Figure 2-1. These routes
were designed in a prior study and that are used as a consistent basis for measuring vehicle activity,
energy use, and emissions (Frey et al., 2008). Routes A and C are alternative paths between North
Carolina State University (NCSU) and North Raleigh (NR), and Routes 1 and 3 are alternative
paths between NR and RTP. Routes A and 3 are comprised of major and minor arterials. Routes
C and 1 additionally include freeway segments. These routes include local, minor arterial, major
arterial, and freeway roads, with speed limits ranging from 25 mph to 70 mph. The selected routes
have road grades ranging between plus and minus 10 percent. Thus, vehicle data collection
includes a wide range of road types, traffic conditions, speed, acceleration, and grade.
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Table 0-1 Specifications of Ten Selected Measured Vehicles

wumber EE gy
Year  Make Model Type? of et Vveight Rated Fuel
Cylinders (liters) Ib) E((:;)nnomy
pg)
2005 Mazda 6 PC 4 2.3 3200 23
2008 Chevrolet Impala PC 6 35 3600 22
2004 Pontiac Grand AmGT  PC 6 3.4 3100 21
2001  Volvo S40 PC 4 1.8 2800 23
2009 Honda Civic PC 4 1.8 2800 29
1998  Buick Century PC 6 31 3300 21
2002 Chevrolet Silverado PT 8 4.8 4900 16
2011 Ford F150 PT 8 4.6 5000 17
1998 Chevrolet S10 PT 6 4.3 4600 16
2004 Chevrolet Tahoe PT 8 53 6800 16
a Vehicle type: PC = Passenger Car, including sedans; PT = Passenger Truck, including

SUVs and pickup trucks.
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North
Raleigh

RTP

Route A

Capital
Blvd.

Figure 0-1 Map of the Selected Routes in Raleigh and Research Triangle Park (RTP) Area.
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Instruments

The following instruments were used during the measurements:

« An OBD scan tool
» A portable emission measurement systems (PEMS)
« Multiple Garmin 76CSx global position system (GPS) receivers.

More details on each of the key instruments are given below.

On-Board Diagnostic Scantool

An OBD scantool, OBD Pro hardware and ScanPro software, was used to obtain OBD parameters
at approximately 1 Hz frequency, including MAP, RPM, intake air temperature (IAT), vehicle
speed, mass air flow (MAF) and mass fuel flow (MFF) for the 10 selected vehicles. The OBD
scantool was connected to the vehicle OBD-II port and read selected OBD parameters via the
vehicle electronic control unit. A laptop was used to record the data. Figure 2-2 shows the OBD
scantool.

Portable Emission Measurement System

The OEM-2100 Axion PEMS manufactured by GlobalMRV was used to measure the exhaust
composition. The Axion system is comprised of two parallel five-gas analyzers and an on-board
computer. The two parallel gas analyzers simultaneously measure the exhaust volume percentage
of CO, carbon dioxide (CO2), and HC using non-dispersive infrared (NDIR) , and nitric oxide
(NO) and oxygen (O2) using electrochemical cell.

The measured exhaust emission concentrations for the same type of PEMS were compared
to a reference method by Battelle (2003) using a chassis dynamometer. The measured
concentrations for CO2, CO, and NO from PEMS were within 10% of the reference method. For
HC, the concentrations from PEMS were biased low by a factor of approximately 2 due to
difference in detection methods.

Prior to each measurement, the Axion System gas analyzers were calibrated using a BAR-
97 high concentration calibration gas mixture. During measurement, the gas analyzers were
“zeroed” using ambient air every 10 minutes to prevent instrument drift (Frey et al., 2008).

The Axion System is designed to measure emissions during the actual use of the vehicle or
equipment in its regular daily operation. The monitoring system weighs approximately 35 Ibs.
The system typically runs on 12V DC vehicle electricity. The power consumption is 5 to 8 Amps.
Figure 2-3 shows the deployment of the Axion PEMS in the vehicle, and the connection of the
Axion PEMS exhaust sampling line to the vehicle exhaust.
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-

(a) Vehicle OBD-II Connection (b) OBD Laptop

Figure 0-2 Pictures of On-Board Diagnostics Connection and Data Acquisition Laptop.

(a) PEMS Inside the Vehicle (b) PEMS Exhaust Sampling Line
Connected to the Vehicle Exhaust Pipe

Figure 0-3 Pictures of Portable Emission Measurement System (PEMS).

Garmin Global Position System Receivers

Garmin 76CSx GPS receivers with barometric altimeter were used to record vehicle position and
elevation. The GPS receivers measure position to within £3 meters. Relative changes in elevation
are measured within £1 meter. Road grades for every non-overlapping consecutive 0.1 mile
segment were inferred based on the method demonstrated elsewhere (Boroujeni and Frey, 2014).
Figure 2-4 shows the deployment of GPS receivers during measurements.
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N

Figure 0-4 Pictures of Garmin Global Position System (GPS) Receivers.

Data Collection

Preparation for field data collection included verification of the status of the PEMS, verification
that all the parts and equipment were available, and laboratory calibration of the PEMS. Taking
field measurements consisted of the installation of the instrumentation into a vehicle, data
collection, and decommissioning.

Typically a vehicle started from NCSU, and was driven along Route A to North Raleigh
and then along Route 1 to RTP. Afterwards, the vehicle returned to North Raleigh and NCSU
following Route 1 and A. The vehicle then was driven to North Raleigh and RTP again following
Route C and 3, and returned via Route 3 and C. The entire measurement took about 4 hours per
vehicle.

Quality Assurance

The data measured from the PEMS, OBD, and GPS receivers were synchronized and combined.
For quality assurance purposes, the combined data set was screened to check for errors or possible
problems (Sandhu and Frey, 2013). Typical errors include unusual air-to-fuel ratio and negative
emissions values. The errors were either corrected or the errant data records were not used for
data analysis.

Data Analysis

For all vehicles, MFF was reported by the OBD. The 1 Hz exhaust mass flow rate was estimated
based on carbon balance using MFF, exhaust mole fractions of CO,, CO, and HC, molecular
weight of fuel, and weight percent of carbon in the fuel. Based on exhaust flow rate and pollutant
concentrations in the exhaust, time-based emission rates of each pollutant were estimated (Frey et
al., 2008).
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For the purpose of evaluating the concordance between IOVs and EOVs as indicators of engine
power demand, the relationship between Puxr and VSP was assessed. For light-duty vehicles,
VSP is estimated based on vehicle speed, vehicle acceleration, and road grade:

VSP =v(1.1a+9.81r +0.132) +0.000302v* (2-1)

Where: VSP is vehicle specific power (kW/ton); v is vehicle speed (m/s); a is vehicle acceleration
(m/s?); and r is road grade (slope). The relationship between Puxr and VSP was evaluated.

A previously developed VSP-based modelling approach (Frey et al., 2002; Zhang, 2006)
was used to estimate vehicle exhaust emissions. In this approach, VSP values were stratified into
14 bins and the average fuel use and emission rates were estimated for each of the 14 VVSP bins.
For each VSP value, the average fuel use and emission rates were compared with the measured
rates. A linear regression between the estimated average rates and the measured rates was used to
evaluate the performance of the VSP-based model.

The relationship between fuel flow and engine variables for a stoichiometric gasoline
engine can be inferred based on factors that affect engine air flow. Engine air flow is proportional
to Pmxr, as indicated by the commonly used “speed-density” method (Taylor, 1985; Vojtisek-Lom
and Cobb, 1998). Engine air flow is also influenced by engine displacement, number of strokes
per cycle, IAT, and engine volumetric efficiency. However, for a given engine with fixed engine
displacement and number of strokes per cycle, IAT and engine volumetric efficiency tend to have
much less relative variability than MAP and RPM; thus, the 1 Hz variability in engine air flow is
mostly influenced by variability in MAP and RPM.

Conventional gasoline engines typically run at stoichiometric combustion conditions with
a few exceptions related to cold starts and high power demand during a trip (Heywood, 1998). A
cold start typically lasts for only a few minutes (Sentoff et al., 2010). High power demand can
occur in association with travel at high speed, at high acceleration, during hill climbing, or
combinations of these but typically lasts only for a few seconds (Frey et al., 2008). Thus, for most
periods during a trip the engine runs stoichiometric and the fuel flow rate is proportional to engine
air flow, which in turn is proportional to Pmxr. Therefore, relationships between fuel use rates and
each of MAP, RPM, and Pwxr Were investigated.

In previous work, various model function forms were evaluated for predicting fuel use and
emission rates based on OBD data (Frey et al., 2010). However, based on the data collected for
the 10 measured vehicles, the fuel use and emission rates of CO, HC, and NOx typically follow a
power trend over Pmxr, as shown later. Therefore, a multiplicative model was used:

mi(,zp)red = b(PM xR )n (2'2)

@
Where: T pred is a mass flow rate of species i predicted by Equation (2-2); i is either fuel use, CO,

HC, or NOy; and b and n are fitted scaling and power parameters, respectively.

10
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For models based on Equation (2-2), a log-transformation technique was used to estimate
the scaling and power parameters. However, bias is introduced when transforming back from the
logarithm unit to the original arithmetic unit. Therefore, a log-transformation bias correction
factor, Ciog, Was used per the method demonstrated in (Newman, 1993):

(3)
mi, pred

=b(R,.5)"xC (2-3)

log

®
Where: Mt s a mass flow rate of species i predicted by Equation (2-3); and Ciog is the log-

transformation bias correction factor. After log-transformation bias correction, the fuel use and
emission rates at 1 Hz rate were predicted based on Equation (2-3). However, because a log-
transformation in effect leads to an estimate of the median value, rather than mean values, an
additional bias correction is needed (Frey et al., 2010). For the purpose of bias correction, a linear
regression was conducted between the Equation (2-3) predicted fuel use and emission rates and
measured rates. The form of this bias correction, including the bias correction slope a’ and bias
correction intercept b/, is:

3 _qr !
mi,pred =ax mi,measure +b (2'4)

Where: Mimessire js the measured mass flow rate of species i; and a' and b' are fitted slope and
intercept, respectively. Taken into account the analysis steps of Equations (2-3) and (2-4),
Equation (2-3) may be written as:

! _Cu

®)
m g (2-5)

i, pred

=b(Py.x)"xC

m® . : _ . C. : .
Where: P s the predicted mass flow rate of species i based on Equation (5); ~' is the ratio
of Ciog OVer a’; and C" is the ratio of b’ over a’. Thus, Equation (2-5) is a bias corrected version of
Equation (2-3). Equation (2-5) was used as the final form in predicting fuel use and emission rates
based on Pmxr.

As an evaluation of goodness-of-fit, the predicted value from Equation (2-5) was compared
to the measured value using a parity plot, in which each second of predicted value is plotted versus
the corresponding measured value. A linear trend line was fit to the parity plot to assess goodness-
of-fit. If the fit is ideal, then the trend line would have a slope of 1 and an intercept of 0. Thus,
the goodness-of-fit was evaluated, in part, based on the R? and standard error of the following:

(C) -
mi,pred =1x mi,measure +0 (2-6)

As described later, a substantial portion of the 1 Hz exhaust concentrations were below the gas
analyzer detection limit, especially for CO and HC, for some vehicles. As long as the mean value
of the emission factor is for a concentration that is above the detection limit, the mean value is
usually robust to the presence of non-detected measurements (Frey and Zhao, 2004). However, if
the mean emission rate is associated with a measured concentration below the detection limit, then

11
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the resulting regression model will be subject to large relative random errors and will typically
have a poor predictive capability, low R?, and high residual standard error. Thus, as will be shown
later, models with very poor goodness-of-fit are typically associated with a high proportion of very
low exhaust concentrations. Conversely, models fit to data with a high proportion of measured
exhaust concentrations above the detection limit are expected to be statistically significant and to
have better explanatory capability.

12
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For each of the 10 vehicles, typically more than 12,500 seconds of valid data were collected, which
account for more than 95 percent of raw data from the field measurements. Errant data, primarily
due to unusual air-to-fuel ratio, were excluded from the analysis.

The results section includes an example of a 2005 Chevrolet Tahoe to demonstrate
development of the models, and a synthesis summary of the evaluation of the models based on all
10 vehicles.

Results

Example Detailed Results for a 2005 Chevrolet Tahoe

A 2005 Chevrolet Tahoe is taken as an example to demonstrate the relationship between I0Vs
versus EOVs, and the relationship between fuel use and emission rates versus Puxr.

Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure 3-1. Average Pmxr values are
plotted versus VVSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range accounts
for over 99% of measured vehicle activity. At negative VSP, there is no load on the engine and,
thus, Pmxr IS approximately constant. For increasing positive VSP, Puxr typically increases
monotonically.

A regression analysis was conducted for Pmxr versus VSP for positive VSP values, as
shown in Figure 3-1(b):

P, =38100xVSP®*, for VSP>0, R? = 0.97 2-7)

Pmxr is 32,000 kPa-rev/min for negative VSP, and is corrected to no less than 32,000 kPa-rev/min
for positive VSP. The p-values for the estimated scaling parameter of 38,100 and power parameter
of 0.42 are both less than 0.001, indicating statistical significance. Pmxr is highly correlated with
VSP. Thus, Puxr is a good surrogate for engine power demand for this vehicle.

Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures 3-2(a)
through 3-2(d). For each VSP bin, there is substantial variability in fuel use and emission rates,
as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-percentile, and
97.5-percentile of one second values within each VSP bin. The R? for fuel use and emissions of
CO, HC, and NOx are 0.75, 0.32, 0.54, and 0.51, respectively. Thus, VSP is shown to be a good
basis for estimating fuel use, and is able to explain some of the variability in 1 Hz emission rates.
Furthermore, VSP is accurate in quantifying the mean trend in these rates.

13
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Figure 2-5 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions per
Minute (RPM) versus Vehicle Specific Power (VSP) for a 2005 Chevrolet Tahoe. Error bars
indicate 95 percent confidence intervals.
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Figure 2-6 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2005 Chevrolet Tahoe measured during 110
miles of driving in the Raleigh, NC area.
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Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures 3-3(a) and 3-
3(b), respectively. The coefficients of determination for fuel use as a power function of MAP and
RPM are 0.66 and 0.76, respectively. The p-values for the scaling and power parameters for both
power regressions were less than 0.001, indicating statistical significance. Therefore, each of MAP
and RPM can be an explanatory variable for fuel use, explaining a substantial amount of the
variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in
fuel use rate is better explained by Puxr, as shown in Figure 3-3(c). Based on Equation (2), and
as shown in Figure 3-3(c), the fitted equation for fuel use rate versus Puxr Iis:

(2)
mFueI, pred

=5.1x10"°x(R,.5)"**, R =0.98 (2-8)

The p-values for both the scaling parameter of 5.1x10 and power parameter of 1.14 are less than
0.001, indicating statistical significance. After log-transformation bias correction, the model in
the form of Equation (2-3) is:

©)
rnFueI ,pred

=5.1x10° x (P, ,)"* x1.01 (2-9)

The numerical value of “1.01” is the log-transformation bias correction factor. The fuel use rates
predicted by Equation (2-9) versus measured rates are compared and a linear regression fit is
conducted based on Equation (2-4):

(3)
mFuel , pred

=1.01X My ) reaeure —0.001 (2-10)

measure

Based on the fitted slope of 1.01 and intercept of —0.001 in Equation (2-10), and by substitution of
Equation (2-9) into Equation (2-10), the predicted fuel use with bias corrections in terms of Pusxr
in the form of Equation (2-5) is:

m®, . =51x10"°x (P, )" x1.00—(~0.001) (2-11)

Fuel, pred

The numerical values of “1.00” and “—0.001” are the correction factors. Equation (2-11) is used
for predicting fuel use rates based on Pmxr for this vehicle.
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Figure 2-7 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2005 Chevrolet Tahoe measured during 110 miles of
driving in the Raleigh, NC area.

A parity plot comparison between the Equation (2-11) predicted versus measured fuel use rates is
shown in Figure 3-3(d), based on Equation (2-6). The data points follow a linear trend. The slope
is 1 and the intercept is 0. The standard deviation of the residuals is 0.14 mg/s, which is small
compared to mean fuel use rates of 1.5 mg/s. The R? for the linear fit is 0.99. The R? value of
0.99 is a significant improvement compared to the R? value of 0.75 based on the VSP-based
approach. Therefore, the IOV-based model performs better than the EOV-based modal. There are
some artifacts of the scatter plot that imply that the residual error may have non-constant variance
with respect to the magnitude of fuel use rate. For very high fuel use rate the sample size is very
small. Therefore, the “fit” for fuel use rates higher than about 6 g/s may not seem as “good” as for
smaller values. However, from a practical perspective, this model is highly effective in predicting
fuel use rate without any average bias.
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Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures 3-4(a), 3-4(c), and 3-4(e), respectively. For CO, most of the data points follow a power
trend. A small portion of data has much higher CO emission rates compared to the fitted model.
For this vehicle, some of the CO emission rates were relatively high, ranging up to approximately
1,000 mg/sec. However, CO emission rates were higher than 200 mg/sec only 0.7% of time.
These very high emission rates are likely to be from short duration events in which the air-to-fuel
ratio was commanded by the ECU to run fuel rich to prevent the catalytic converter from
overheating, also known as “open-loop” operation, and thus this cluster of data is a different
operating condition than the vast majority of the entire dataset. A regression model based solely
on Pmxr is not able to predict this cluster of very high emitting values as a distinct emissions event
from the main trend for over 99% of the data set. Thus, the data are stratified. For measured CO
emission rates of less than 200 mg/s, the IOV model based on Puxr for CO emission rates is
developed similarly to the model for fuel use rates. The model in the form of Equation (2-5) is:

(5)
mCO, pred

=3.0x10" x(P,,,)"* x1.11-0.78, R> = 0.75 (2-12)

The numerical values of “1.11” and “0.78” are the bias correction factors. Both the fitted scaling
parameter of 3.0x107 and the power parameter of 1.64 have p-values of less than 0.001, indicating
statistically significance.

For the cluster of high emitting “open-loop” data that were separated from the main data
set, the model is:

Mo prea =0.034% (Py,2)°* x2.6-640, R? = 0.48 (2-13)

Where: mgg_OL’pred is the predicted CO emission rate for “open-loop” data based on Equation (2-

5). The parity plot for this model had an R? of 0.47 and a standard error of 220 mg/sec, which is
approximately 49% of the mean emission rate for this stratum of data. The model of Equation (2-
13) would be selected based on an IOV that indicates “open-loop” events. Such IOVs are available
internally in the ECU although they are not typically broadcast via the OBD interface.
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Figure 2-8 Relationship between emission rates and the product of Manifold Absolute Pressure
(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and
measured emission rates for a 2005 Chevrolet Tahoe measured during 110 miles of driving
in the Raleigh, NC area.

A comparison of Equation (2-12) predicted versus measured CO emission rates is shown in Figure
3-4(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.83 is a significant
improvement compared to the R? value of 0.32 for the VSP-based model shown in Figure 3-2(b).
The VSP model includes the high emitting portion of the data set that was excluded from the
regression model of Equation (2-12). However, Equation (2-13) also has a good fit and thus the
IOV-based approach, coupled with an IOV to distinguish between closed-loop and open-loop
control of the air-to-fuel ratio, would cover the same overall data as the VSP model. Although the
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scatter plot gives the impression that the fitted model may not be very good, this impression is
somewhat misleading. In fact, a large proportion of the data are clustered very close to the fitted
line. As shown in Figure 3-4(b), the 50 percent frequency range of the residuals of the parity plot
are so close to the parity line that the upper and lower bound of this 50 percent frequency range is
barely different than the parity line, and the 50 percent range is approximately 4 mg/s. Thisis a
very small range compared to the mean emission rates of 30 mg/s. The 95 percent frequency range
is also shown. The standard deviation of the residuals is 14 mg/s. Thus, the high R? of this model
reflects that most of the predicted values are closely clustered toward the measured values.

Figure 3-4(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be several clusters in this scatter plot. The majority of HC emission rates ranging
from O to approximately 6 mg/s follow a power trend versus Pmsxr. There also appear
approximately 3 more clusters each containing a small portion of data. Two clusters have higher
HC emission rates than the fitted model, such as about 6 to 8 mg/s and about 4.5 to 6 mg/s at Puxr
of 150,000 to 200,000 kPa-rev/min. There is also a cluster of data with lower HC emission rates
than the fitted model, such as approximately 1 to 2 mg/s at Puxr of 150,000 to 200,000 kPa-
rev/min. Therefore, at Pmxr higher than 150,000 kPa-rev/min, four clusters of data appear. This
vehicle has 4-gear automatic transmission. These clusters might be associated with gear selection.
For example, an exploration analysis is conducted for data with Pmxr ranging from 150,000 to
200,000 kPa-rev/min. The HC emission rates are stratified into four sub-groups: from 0 to 2 mg/s,
from 2 to 4.5 mg/s, from 4.5 to 6 mg/s, and higher than 6 mg/s. The average values of MAP
decrease and the average values of RPM increase for the four sub-groups with increasing HC
emission rates. Therefore, higher HC emission rates might be associated with higher RPM with
lower gear. Although stratification of these data might be possible based on additional IOVs, these
clusters cannot be discriminated based on Puxr alone. For all data, the fitted model is:

MR e =1.1x10° x (B, )"* x1.43-0.35, R? = 0.69 (2-14)

The numerical values of “1.43” and “0.35” are the bias correction factors. Both the fitted scaling
parameter of 1.1x10 and the power parameter of 1.24 have p-values of less than 0.001, indicating
statistical significance. This R? is sufficiently high to imply that the clusters identified above are
not substantially compromising the mean explanatory capability of this fitted model.

A comparison of Equation (14) predicted versus measured HC emission rates is shown in
Figure 3-4(d). The R?is 0.77 and is a significant improvement compared to the R? of 0.54 based
on the VSP-based model, as illustrated in Figure 3-2(c). Therefore, the I0V-based model describes
the HC emission rates well, and is better than the EOV-based model. The standard deviation of
the residuals of this model is 0.71 mg/sec, which is 60 percent of the mean measured emission rate
of 1.2 mg/sec. The 50 percent frequency range of the residuals is very close to the parity line,
ranging within only £0.3 mg/sec of the predicted value. The 95 percent frequency range of the
residuals is also shown.
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The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure 3-4(e).
The data appear to follow a power trend. The fitted model is:

M3y pes = 125107 % (R )" x1.39-032, R* = 0.75 (2-15)

The numerical values of “1.39” and “0.32” are the bias correction factors. Both the fitted scaling
parameter of 1.2x10712 and the power parameter of 2.63 have p-values of less than 0.001, indicating
statistical significance.

A comparison of Equation (2-15) predicted and measured NOx emission rates is shown in
Figure 3-4(f). The R?is 0.69, which is better than the R? of 0.51 of the VSP-based model illustrated
in Figure 3-2(d). Therefore, the 10V-based model is better than the EOV-based model in
predicting NOx emission rates. The 50 percent frequency range of the residuals is within 0.5
mg/s, compared to a mean measured emission rate of 1.6 mg/sec. The standard deviation of the
residuals is 1.4 mg/s. The apparent broad clustering of the scatter plot for values less than about
8 mg/sec is a visual artifact, since scatter plots are not effective at depicting the relative frequency
of clustering for overlapping data. The data are in fact highly clustered around the fitted model.

Synthesis Summary for All Vehicles

Each of the 10 measured vehicles has been analyzed similar to the Chevrolet Tahoe demonstrated
above. Table 3-1 shows a synthesis summary of the coefficients of determination for the fitted
models for 10Vs versus EOVs, and for the fit between each of the 10V-based and EOV-based
predicted rates versus measured rates for each of fuel use and emissions. For all 10 vehicles, the
coefficients of determination for the power regression between Puxr and VSP are 0.94 or higher.
For all vehicles, the p-values for both the fitted scaling and power parameters are less than 0.001,
indicating statistical significance. Therefore, Pmxr and VSP are closely related. For negative VSP
values, Puxr is approximately constant, but varies depending among vehicles from 32,000 kPa-
rev/min to 45,100 kPa-rev/min.

For fuel use, the coefficients of determination for the 10V-based model predicted versus
measured rates are 0.92 or higher. For the EOV-based models, the coefficients of determination
for the relationship between predicted and measured fuel use rates range from 0.53 to 0.75.
Therefore, in predicting fuel use rates, the models using IOVs as explanatory variables perform
better than the models using EOVs as explanatory variables.
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Table 2-2 Coefficients of Determination (R?) for Internally Observable Variable (I0V) versus Externally Observable Variable (EOV)
and for Each of IOV-Based and EOV-Based Model Predicted versus Measured Fuel Use and Emission Rates for 10 Measured

Vehicles
Fuel Use CO HC NOy
PMXI-?{ _VS. 10V EOV [0)V4 EOV 10V EOV 10V EOV
) Positive Based Based Based Based Based Based Based Based
Vehicle VSP?  Model®vs. Model°vs. Modelvs. Modelvs. Modelvs. Modelvs. Modelvs.  Model vs.
Measured Measured Measured Measured Measured Measured Measured Measured
Coefficients of Determination (R?)
2005 Mazda 6 0.98 0.97 0.61 0.15 0.09 0.58 0.35 0.04 0.08
2008 Chevrolet 0.97 0.92 0.62 0.02 0.01 0.32 0.20 0.10 0.14
Impala
2004 Pontiac
Grand Am GT 0.99 0.98 0.74 0.03 0.02 0.49 0.22 0.05 0.13
2001 Volvo S40 0.99 0.97 0.66 0.13 0.11 0.001 0.10 0.30 0.27
2009 Honda Civic 0.98 0.95 0.71 0.03 0.04 0.51 0.34 0.18 0.18
1998 Buick 0.94 0.99 0.53 0.05 0.13 0.10 0.15 0.39 0.22
Century
2002 Chevrolet 0.96 0.99 0.72 0.39 0.32 0.91 0.66 0.77 0.46
Silverado
2010 Ford F150 0.95 0.99 0.68 0.06 0.03 0.67 0.43 0.24 0.16
1998 (S:'l‘g‘”o'“ 0.97 0.98 0.68 0.04 0.03 0.23 0.10 0.26 0.20
2°°5T(;Eg‘ér°'9t 0.97 0.99 0.75 0.83 0.32 0.77 0.54 0.69 0.51
a Puxr is the product of Manifold Absolute Pressure (MAP) and engine Revolutions Per Minute (RPM), VSP is vehicle specific power.
b IOV based model uses Puxr as explanatory variables.
¢ EQV based model uses VSP as explanatory variables.
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For CO, the coefficients of determination for the IOV-based models range from 0.02 to 0.83, with
substantial variability among vehicles. For the EOV-based models, the coefficients of
determination range from 0.01 to 0.32. For 8 out of 10 vehicles, the IOV-based models have higher
R? compared to the EOV-based models, indicating that the I0V-based models would be better in
predicting CO emission rates. However, for 8 vehicles, the IOV-based models have R? less than
0.15, indicating poor fit. One reason for this is that the measured CO concentrations are below the
instrument detection limit for typically 40% to 80% of the 1 Hz emission rates for these vehicles.
The high proportion of measurements below detection limit leads to random variability in the data,
especially when the mean emission rate is associated with measured concentrations below the
detection limit.

For HC, the coefficients of determination for the 10V-based models range from 0.23 to
0.91, except for a 2001 Volvo S40 and a 1998 Buick Century, for which the R? values are 0.001
and 0.10, respectively. The measured HC concentrations are below the detection limit for 54%
and 96% of time for the Volvo and the Buick, respectively. The high proportion of data below
detection limit leads to random variability. For the other eight vehicles, the IOV-based models
perform better than the EOV-based models.

For NOy, the coefficients of determination for the IOV-based models range from 0.18 to
0.77, except for a 2005 Mazda 6, a 2008 Chevrolet Impala, and a 2004 Pontiac Grand Am GT, for
which the R? values are 0.04, 0.10, and 0.05, respectively. For the Mazda, the Chevrolet, and the
Pontiac, 81%, 77%, and 87%, respectively, of the measured NOx concentrations are below the
detection limit. For the other seven vehicles, the IOV-based models have higher R? than the EOV-
based models.

Overall, in terms of coefficients of determination, the models using 10Vs as explanatory
variables are typically better than the modals using EOVs as explanatory variables in predicting
fuel use and emission rates. However, there are some limitations in the I0V-based models. The
models are not predicting CO, HC, and NOx emission rates as well as fuel use rates. One reason
is that a substantial proportion of the measured concentrations is below the detection limit, which
leads to random variability (Sandhu and Frey, 2013). Another reason is that the models are
developed based on tailpipe emissions, which are also influenced by the catalytic converter.
Though such influence has been taking into account in the Comprehensive Modal Emissions
Model (CMEM) developed by University of California Riverside (Barth et al., 1996), future
exploration of an IOV modeling approach that might make use of additional 10Vs, such as related
to commanded fuel rich operation or catalyst temperature can be conducted, but such exploration
would require addition in-use measurements.
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Conclusions

IOV-based predictors of engine load, in particular Pmxr, are highly correlated and concordant with
EOV-based predictions, such as VSP, over a wide range of VSP. Furthermore, they are better
predictors of fuel use and are typically better predictors of emission rates.

A method is demonstrated to predict fuel use and emission rates based on the use of IOVs,
such as Puxr. Fuel use rates can be accurately estimated using the 10V-based model based on
Pwmxr, and such models performs better than models using EOVs as explanatory variables. For
CO, HC, and NOx emission rates, the 10V-based model typically provides similar or better
prediction than the EOV-based model, but the goodness-of-fit is subject to substantial variability
among vehicles. Usually, the best fits are obtained for vehicles that have exhaust concentrations
above the detection limit of the gas analyzer. Thus, models for low emitting vehicles tend not to
be as good. However, from a policy perspective, there is typically more interest in how to identify
and manage high emission rates. Thus, the trade-off between detection limit and goodness-of-fit
IS not a substantial problem in that there would be less need to manage emissions from vehicles
that have low emission rates compared to vehicles that have high emission rates. 10V-based
models of emission rates could be incorporated into the ECU to enable reporting feedback to
drivers regarding their emission rates.

The product of MAP and RPM is shown to be highly predictive of CO, HC, and NOx
emission rates for the majority of measured vehicles. However, the detailed evaluation of model
goodness-of-fit also indicates that there are opportunities to extend this work to improve model
performance by incorporating other IOVs. For examples, 10Vs related to open loop operation
would help to explain episodic high CO emission rates. 10Vs related to the choice of gear might
also improve explanatory power, such as for HC emission rates. Nonetheless, models based on
the readily available I0Vs of MAP and RPM are shown to be effective in predicting fuel use with
high precision and in predicting emission rates with high precision for emission rates above the
gas analyzer detection limit. The models shown here will be incorporated into a new traffic
simulation model. Further development of IOV-based models of emissions on a vehicle specific
basis is recommended.
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Appendix A. Results for Measured Vehicles

Al 2005 Mazda 6

For the 2005 Mazda 6, more than 12,200 seconds of valid data were collected, which account for
more than 95 percent of raw data from the field measurements.

A1.1  Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure A-1. Average Puxr values are
plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Pmxr versus VSP for positive VSP values, as shown in
Figure A-1(b):

Pui.r =58700xVSP**, for VSP>0, R? = 0.98 (AL-1)

Pmxr s 45,000 kPa-rev/min for negative VSP, and is corrected to no less than 45,000 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 58,700 and power
parameter of 0.39 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS @ good surrogate for engine power demand for this vehicle.

Al.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
2(a) through A-2(d). For each VVSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.61, 0.09, 0.35, and 0.08, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-1 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2005 Mazda 6. Error bars
indicate 95 percent confidence intervals.
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Figure A-2 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2005 Mazda 6.
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A1.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-3(a) and A-
3(b), respectively. The coefficients of determination for fuel use as a power function of MAP and
RPM are 0.77 and 0.52, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-3(c). The predicted fuel use with bias
corrections in terms of Puxr in the form of Equation (5) is:

m&, . =32x10° x(R,.)"* x1.04-0.027, R? = 0.92 (A1-2)

Fuel, pred

The numerical values of “1.04” and “0.027” are the correction factors. Equation (Al-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A1-2) predicted versus measured fuel use rates
is shown in Figure A-3(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.13 mg/s, which is
small compared to mean fuel use rates of 0.95 mg/s. The R? for the linear fit is 0.97. The R?
value of 0.97 is a significant improvement compared to the R? value of 0.61 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-3 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2005 Mazda 6 measured during 110 miles of driving in
the Raleigh, NC area.

Al.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-4(a), A-4(c), and A-4(e), respectively. For CO, most of the data points follow a power
trend. A small portion of data has much higher CO emission rates compared to the fitted model.
the IOV model based on Pwvxr for CO emission rates is developed similarly to the model for fuel
use rates. The model in the form of Equation (5) is:

Mo pred = 3:5x107 x(B,2)"* x13-9.6, R* = 0.39 (A1-3)

The numerical values of “13” and “9.6” are the bias correction factors. Both the fitted scaling
parameter of 3.5x107 and the power parameter of 1.27 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A1-3) predicted versus measured CO emission rates is shown in
Figure A-4(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.15 is
higher compared to the R? value of 0.09 for the VVSP-based model shown in Figure A-2(b).

Figure A-4(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0 to approximately 6 mg/s follow a power trend versus Pmxr. There also appear other
clusters each containing a small portion of data. Two clusters have lower HC emission rates than
the fitted model, such as about 0 to 0.5 mg/s and about 0.5 to 1 mg/s at Pmxr of 150,000 to
250,000 kPa-rev/min. This vehicle has 4-gear automatic transmission. These clusters might be
associated with gear selection. Although stratification of these data might be possible based on
additional 10Vs, these clusters cannot be discriminated based on Pwusr alone. For all data, the
fitted model is:

M ores =1.2x10° x (B, o) x2.1-0.45, R? = 0.50 (A1-4)

The numerical values of “2.1” and “0.45” are the bias correction factors. Both the fitted scaling
parameter of 1.2x107 and the power parameter of 1.13 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (Al-4) predicted versus measured HC emission rates is shown in
Figure A-4(d). The R?is 0.58 and is a significant improvement compared to the R? of 0.35 based
on the VSP-based model, as illustrated in Figure A-2(c). Therefore, the IOV-based model
describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Puxr is illustrated in Figure A-
4(e). The data appear to follow a power trend. The fitted model is:

My, preg =1.0x107° x (B,,2)** x181-13, R? = 0.17 (A1-5)

The numerical values of “181” and “13” are the bias correction factors. Both the fitted scaling
parameter of 1.0x107 and the power parameter of 0.97 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (Al1-5) predicted and measured NOx emission rates is shown in Figure
A-4(f). The R?is 0.05, which is slightly lower than the R? of 0.08 of the VSP-based model
illustrated in Figure A-2(d). Both the IOV- and EOV- based models are not well explaining the
variation in NOx emission rates.
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Figure A-4 Relationship between emission rates and the product of Manifold Absolute Pressure
(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and
measured emission rates for a 2005 Mazda 6 measured during 110 miles of driving in the
Raleigh, NC area.
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A2 2008 Chevrolet Impala

For the 2008 Chevrolet Impala, more than 11,500 seconds of valid data were collected, which
account for more than 98 percent of raw data from the field measurements.

A2.1  Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure A-5. Average Puxr values are
plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Pmxr versus VSP for positive VSP values, as shown in
Figure A5(b):

P, =44800xVSP*#  for VSP>0, R? = 0.97 (A2-1)

Pmxr s 40,000 kPa-rev/min for negative VSP, and is corrected to no less than 40,000 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 44,800 and power
parameter of 0.42 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A2.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
6(a) through A-6(d). For each VSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.62, 0.01, 0.20, and 0.14, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-5 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2008 Chevrolet Impala. Error
bars indicate 95 percent confidence intervals.
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Figure A-6 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2008 Chevrolet Impala.
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A2.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-7(a) and A-
7(b), respectively. The coefficients of determination for fuel use as a power function of MAP and
RPM are 0.84 and 0.71, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-7(c). The predicted fuel use with bias
corrections in terms of Puxr in the form of Equation (5) is:

ME), oy =2.6x10° x(P,,4)"* x1.18-0.18, R? = 0.95 (A2-2)

Fuel, pred

The numerical values of “1.18” and “0.18” are the correction factors. Equation (A2-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A2-2) predicted versus measured fuel use rates
is shown in Figure A7(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.23 mg/s, which is
small compared to mean fuel use rates of 1.2 mg/s. The R? for the linear fit is 0.92. The R?
value of 0.92 is a significant improvement compared to the R? value of 0.62 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-7 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2008 Chevrolet Impala measured during 110 miles of
driving in the Raleigh, NC area.

A2.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-8(a), A-8(c), and A-8(e), respectively. For CO, most of the data points follow a power
trend. A small portion of data has much higher CO emission rates compared to the fitted model.
the IOV model based on Pumsxr for CO emission rates is developed similarly to the model for fuel
use rates. The model in the form of Equation (5) is:

M preq =8.5x107* x (P, 2)*™ x370-87 , R* = 0.05 (A2-3)

The numerical values of “370” and “87” are the bias correction factors. Both the fitted scaling
parameter of 8.5x10* and the power parameter of 0.70 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A2-3) predicted versus measured CO emission rates is shown in
Figure A-8(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.02 is
similar compared to the R? value of 0.01 for the VVSP-based model shown in Figure A-6(b). Both
the IOV- and EOV- based models are not well explaining the variation in CO emission rates

Figure A-8(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0O to approximately 6 mg/s follow a power trend versus Pmxr. For all data, the fitted model
is:

ME g =1.8x10° x (R, )"* x4.6-0.46, R2 = 0.39 (A2-4)

The numerical values of “4.6” and “0.46” are the bias correction factors. Both the fitted scaling
parameter of 1.8x107® and the power parameter of 0.99 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A2-4) predicted versus measured HC emission rates is shown in
Figure A-8(d). The R?is 0.32 and is a significant improvement compared to the R? of 0.20 based
on the VSP-based model, as illustrated in Figure A-6(c). Therefore, the IOV-based model
describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
8(e). The data appear to follow a power trend. The fitted model is:

My pres =1:3%10° x (P, 2)"* x43-11, R? = 0.23 (A2-5)

The numerical values of “43” and “11” are the bias correction factors. Both the fitted scaling
parameter of 1.3x10® and the power parameter of 1.46 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A2-5) predicted and measured NOx emission rates is shown in Figure
A-8(f). The R?is 0.10, which is slightly lower than the R? of 0.14 of the VSP-based model
illustrated in Figure A-6(d). Both the IOV- and EOV- based models are not well explaining the
variation in NOx emission rates.
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Figure A-8 Relationship between emission rates and the product of Manifold Absolute Pressure

(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and
measured emission rates for a 2008 Chevrolet Impala measured during 110 miles of driving

in the Raleigh, NC area.
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A3 2004 Pontiac Grand Am GT

For the 2004 Pontiac Grand Am GT, more than 13,400 seconds of valid data were collected,
which account for more than 96 percent of raw data from the field measurements.

A3.1  Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure A-9. Average Puxr values are
plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Pusxr versus VSP for positive VSP values, as shown in
Figure A-9(b):

P, = 44300xVSP%*  for VSP>0, R? = 0.99 (A3-1)

Pmxr s 36,300 kPa-rev/min for negative VSP, and is corrected to no less than 36,300 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 44,300 and power
parameter of 0.42 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A3.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
10(a) through A-10(d). For each VVSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.74, 0.02, 0.22, and 0.13, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-9 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2004 Pontiac Grand Am GT.
Error bars indicate 95 percent confidence intervals.
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Figure A-10 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2004 Pontiac Grand Am GT.
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A3.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-11(a) and
A-11(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.69 and 0.79, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-11(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFueI , pred

=45%x10° x(P, .)** x1.03—0.027 , R? = 0.98 (A3-2)

The numerical values of “1.03” and “0.027” are the correction factors. Equation (A3-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A3-2) predicted versus measured fuel use rates
is shown in Figure A-11(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.12 mg/s, which is
small compared to mean fuel use rates of 0.94 mg/s. The R? for the linear fit is 0.98. The R?
value of 0.98 is a significant improvement compared to the R? value of 0.74 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-11 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2005 Mazda 6 measured during 110 miles of driving in
the Raleigh, NC area.

A3.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-12(a), A-12(c), and A-12(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

M prea =1.3x107° % (B,,2)"*° x92-57 , R?=0.38 (A3-3)

The numerical values of “92” and “57” are the bias correction factors. Both the fitted scaling
parameter of 1.3x107 and the power parameter of 1.15 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A3-3) predicted versus measured CO emission rates is shown in
Figure A-12(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.03 is
similar compared to the R? value of 0.02 for the VSP-based model shown in Figure A-12(b).
Both the 10V- and EOV-based models are not well predicting the CO emission rates.

Figure A-12(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0 to approximately 6 mg/s follow a power trend versus Pmxr. There also appear other
clusters each containing a small portion of data. Two clusters have higher HC emission rates
than the fitted model, such as about 2 to 4 mg/s and about 1 to 3 mg/s at Pmxr of 100,000 to
200,000 kPa-rev/min. This vehicle has 4-gear automatic transmission. These clusters might be
associated with gear selection. Although stratification of these data might be possible based on
additional 10Vs, these clusters cannot be discriminated based on Puxr alone. For all data, the
fitted model is:

M oreg =5.7x10° x (B, o) x2.9-0.44 , R? = 0.37 (A3-4)

The numerical values of “2.9” and “0.44” are the bias correction factors. Both the fitted scaling
parameter of 5.7x107® and the power parameter of 0.97 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A3-4) predicted versus measured HC emission rates is shown in
Figure A-12(d). The R?is 0.49 and is a significant improvement compared to the R? of 0.22
based on the VSP-based model, as illustrated in Figure A-10(c). Therefore, the IOV-based
model describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
12(e). The data appear to follow a power trend. The fitted model is:

My prea = 2:5%107° x(Pyy,2)"*' x69-5.9, R? = 0.36 (A3-5)

The numerical values of “69” and “5.9” are the bias correction factors. Both the fitted scaling
parameter of 2.4x107° and the power parameter of 1.51 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A3-5) predicted and measured NOx emission rates is shown in Figure
A-12(f). The R?is 0.05, which is slightly lower than the R? of 0.13 of the VSP-based model
illustrated in Figure A-10(d). Both the IOV- and EOV- based models are not well explaining the
variation in NOx emission rates.
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Figure A-12 Relationship between emission rates and the product of Manifold Absolute

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between
predicted and measured emission rates for a 2004 Pontiac Grand Am GT measured during
110 miles of driving in the Raleigh, NC area.
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A4 2001 Volvo S40

For the 2001 Volvo S40, more than 13,000 seconds of valid data were collected, which account
for more than 99 percent of raw data from the field measurements.

A4.1  Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure A-13. Average Puxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-13(b):

P,z =59900xVSP*¥" for VSP>0, R? = 0.99 (A4-1)

Pmxr is 45,400 kPa-rev/min for negative VSP, and is corrected to no less than 45,400 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 59,900 and power
parameter of 0.37 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A4.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
14(a) through A-14(d). For each VVSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.66, 0.11, 0.10, and 0.27, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-13 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2001 Volvo S40. Error bars
indicate 95 percent confidence intervals.
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Figure A-14 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2001 Volvo S40.
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A4.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-15(a) and
A-15(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.74 and 0.55, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-15(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFuel ,pred

=26x10° x(P, )" x1.08-0.027, R? = 0.95 (A4-2)

The numerical values of “1.08” and “0.027” are the correction factors. Equation (A4-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A4-2) predicted versus measured fuel use rates
is shown in Figure A-15(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.12 mg/s, which is
small compared to mean fuel use rates of 0.89 mg/s. The R? for the linear fit is 0.97. The R?
value of 0.97 is a significant improvement compared to the R? value of 0.66 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-15 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2001 Volvo S40 measured during 110 miles of driving
in the Raleigh, NC area.

A4.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-16(a), A-16(c), and A-16(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

=46x107 x(P, )" x11-119, R? = 0.30 (A4-3)

(5)
mCO, pred

The numerical values of “11” and “119” are the bias correction factors. Both the fitted scaling
parameter of 4.6x107 and the power parameter of 1.49 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A4-3) predicted versus measured CO emission rates is shown in
Figure A-16(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.13 is
slightly higher compared to the R? value of 0.11 for the VSP-based model shown in Figure A-
14(b).

Figure A-16(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0 to approximately 6 mg/s follow a power trend versus Pumxr. Although stratification of
these data might be possible based on additional 10Vs, these clusters cannot be discriminated
based on Puxr alone. For all data, the fitted model is:

ml(-|5()3 pred — 0.30x (PM xR)_O'O3 x6100-1320, R2=0.0003 (A4-4)

The numerical values of “6,100” and “1,320” are the bias correction factors. Both the fitted
scaling parameter of 0.30 and the power parameter of -0.03 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A4-4) predicted versus measured HC emission rates is shown in
Figure A-16(d). The R?is 0.0.001 and is lower compared to the R? of 0.10 based on the VVSP-
based model, as illustrated in Figure A-14(c). Both the IOV- and EOV-based models are not
well predicting the HC emission rates.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
16(e). The data appear to follow a power trend. The fitted model is:

ml(\ISO)x,pred = 6.1)(10_12 X (F)MxR)Z2 X11_6-8, R? = 0.39 (A4-5)

The numerical values of “11” and “6.8” are the bias correction factors. Both the fitted scaling
parameter of 6.1x10712 and the power parameter of 2.2 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A4-5) predicted and measured NOx emission rates is shown in Figure
A-16(f). The R?is 0.30, which is slightly higher than the R? of 0.27 of the VSP-based model
illustrated in Figure A-14(d). Therefore, the IOV-based model is better than the EOV-based
model in predicting NOx emission rates.
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Figure A-16 Relationship between emission rates and the product of Manifold Absolute
Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between
predicted and measured emission rates for a 2001 VVolvo S40 measured during 110 miles of
driving in the Raleigh, NC area.
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A5 2009 Honda Civic

For the 2009 Honda Civic, more than 12,100 seconds of valid data were collected, which account
for more than 97 percent of raw data from the field measurements.

A5.1  Internally versus Externally Observable Variables

The relationship between Pumxr versus VSP is illustrated in Figure A-17. Average Pmxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-17(b):

Pur =59100xVSP*, for VSP>0, R? = 0.98 (AS-1)

Pmxr is 37,800 kPa-rev/min for negative VSP, and is corrected to no less than 37,800 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 59,100 and power
parameter of 0.43 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A5.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
18(a) through A-18(d). For each VSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.71, 0.04, 0.34, and 0.18, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-17 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2009 Honda Civic. Error bars

indicate 95 percent confidence intervals.
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the Vehicle Specific Power-based model for a 2009 Honda Civic.
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A5.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-19(a) and
A-19(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.83 and 0.61, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-19(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFueI , pred

=3.6x10° x(P, )" x1.13-0.087 , R? = 0.91 (A5-2)

The numerical values of “1.13” and “0.087” are the correction factors. Equation (A5-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A5-2) predicted versus measured fuel use rates
is shown in Figure A-19(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.17 mg/s, which is
small compared to mean fuel use rates of 0.78 mg/s. The R? for the linear fit is 0.95. The R?
value of 0.95 is a significant improvement compared to the R? value of 0.71 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-19 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2009 Honda Civic measured during 110 miles of driving
in the Raleigh, NC area.

A5.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-20(a), A-20(c), and A-20(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

(5)
mCO, pred

=2.1x10° x(P,,)*® x1200—- 710, R2 = 0.23 (A5-3)

The numerical values of “1,200” and “710” are the bias correction factors. Both the fitted
scaling parameter of 2.1x107 and the power parameter of 0.90 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A5-3) predicted versus measured CO emission rates is shown in
Figure A-20(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.03 is
similar compared to the R? value of 0.04 for the VSP-based model shown in Figure A-18(b).
Both the 10V- and EOV-based models are not well predicting the CO emission rates.

Figure A-20(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from O to approximately 6 mg/s follow a power trend versus Pmxr. There also appear another
cluster containing a small portion of data, which have higher HC emission rates than the fitted
model, such as about 1 to 2 mg/s at Pmxr 0f 150,000 to 300,000 kPa-rev/min. This vehicle has 4-
gear automatic transmission. These clusters might be associated with gear selection. Although
stratification of these data might be possible based on additional I0Vs, these clusters cannot be
discriminated based on Pumxr alone. For all data, the fitted model is:

ME. pred =3:1x10° x(P,,,2)*%" x2.6-0.28, R* = 0.74 (A5-4)

The numerical values of “2.6” and “0.28” are the bias correction factors. Both the fitted scaling
parameter of 3.1x10 and the power parameter of 0.97 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A5-4) predicted versus measured HC emission rates is shown in
Figure A-20(d). The R?is 0.51 and is a significant improvement compared to the R? of 0.34
based on the VSP-based model, as illustrated in Figure A-18(c). Therefore, the IOV-based
model describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Puxr is illustrated in Figure A-
20(e). The data appear to follow a power trend. The fitted model is:

My preg = 3-1x107° x (B2 ) ® x20-4.1, R* = 0.41 (A5-5)

The numerical values of “20” and “4.1” are the bias correction factors. Both the fitted scaling
parameter of 3.1x10° and the power parameter of 1.55 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A5-5) predicted and measured NOyx emission rates is shown in Figure
A-20(f). The R?is 0.18, which is the same as the R? of 0.18 of the VVSP-based model illustrated
in Figure A-18(d).
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Figure A-20 Relationship between emission rates and the product of Manifold Absolute
Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between
predicted and measured emission rates for a 2009 Honda Civic measured during 110 miles
of driving in the Raleigh, NC area.
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A6 1998 Buick Century

For the 1998 Buick Century, more than 12,900 seconds of valid data were collected, which
account for more than 99 percent of raw data from the field measurements.

A6.1  Internally versus Externally Observable Variables

The relationship between Pumxr versus VSP is illustrated in Figure A-21. Average Puxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-21(b):

Pur =55200xVSP**, for VSP>0, R? = 0.94 (A6-1)

Pmxr is 43,600 kPa-rev/min for negative VSP, and is corrected to no less than 43,600 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 55,200 and power
parameter of 0.35 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A6.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
22(a) through A-22(d). For each V'SP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.53, 0.13, 0.15, and 0.22, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-21 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 1998 Buick Century. Error
bars indicate 95 percent confidence intervals.
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Figure A-22 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 1998 Buick Century.
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A6.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-23(a) and
A-23(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.75 and 0.79, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-23(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFuel ,pred

=1.4x10°x (P, )" x1.02-0.012, R? = 0.99 (A6-2)

The numerical values of “1.02” and “0.012” are the correction factors. Equation (A6-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A6-2) predicted versus measured fuel use rates
is shown in Figure A-23(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.10 mg/s, which is
small compared to mean fuel use rates of 1.0 mg/s. The R? for the linear fit is 0.99. The R?
value of 0.99 is a significant improvement compared to the R? value of 0.53 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-23 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 1998 Buick Century measured during 110 miles of
driving in the Raleigh, NC area.

A6.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-24(a), A-24(c), and A-24(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

MGy, preg =1.3x107 x(B,,)""° x1550-1270, R? = 0.11 (A6-3)

The numerical values of 1,550 and “1,270” are the bias correction factors. Both the fitted
scaling parameter of 1.3x10 and the power parameter of 0.79 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A6-3) predicted versus measured CO emission rates is shown in
Figure A-24(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.05 is
lower compared to the R? value of 0.13 for the VSP-based model shown in Figure A-22(b). Both
the IOV- and EOV-based models are not well predicting the CO emission rates.

Figure A-24(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0O to approximately 2 mg/s follow a power trend versus Pmxr. For all data, the fitted model
is:

M. e =1.4x107 x (B, 2)""* x51-1.9, R? = 0.36 (A6-4)

The numerical values of “51” and “1.9” are the bias correction factors. Both the fitted scaling
parameter of 1.4x107 and the power parameter of 1.11 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A6-4) predicted versus measured HC emission rates is shown in
Figure A-24(d). The R?is 0.10 and is lower compared to the R? of 0.15 based on the VSP-based
model, as illustrated in Figure A-22(c). Both the IOV- and EOV-based models are not well
predicting the HC emission rates.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
24(e). The data appear to follow a power trend. The fitted model is:

mﬁfgxypred =1.2x10" x(P,.r)**x4.2-5.8, R?=0.61 (AB-5)

The numerical values of “4.2”” and “5.8” are the bias correction factors. Both the fitted scaling
parameter of 1.2x102* and the power parameter of 2.83 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A6-5) predicted and measured NOx emission rates is shown in Figure
A-24(f). The R?is 0.39, which is slightly higher than the R? of 0.22 of the VVSP-based model
illustrated in Figure A-22(d). Therefore, the IOV-based model is better than the EOV-based
model in predicting NOx emission rates.
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Figure A-24 Relationship between emission rates and the product of Manifold Absolute
Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between
predicted and measured emission rates for a 1998 Buick Century measured during 110 miles
of driving in the Raleigh, NC area.
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A7 2002 Chevrolet Silverado

For the 2002 Chevrolet Silverado, more than 12,800 seconds of valid data were collected, which
account for more than 96 percent of raw data from the field measurements.

A7.1  Internally versus Externally Observable Variables

The relationship between Puxr versus VSP is illustrated in Figure A-25. Average Puxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-25(b):

P, . =37900xVSP®*  for VSP>0, R? = 0.96 (A7-1)

Pmxr is 34,400 kPa-rev/min for negative VSP, and is corrected to no less than 34,400 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 37,900 and power
parameter of 0.44 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A7.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
26(a) through A-26(d). For each V'SP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.72, 0.32, 0.66, and 0.46, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-25 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2002 Chevrolet Silverado.
Error bars indicate 95 percent confidence intervals.
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Figure A-26 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2002 Chevrolet Silverado.
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A7.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-27(a) and
A-27(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.68 and 0.70, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-27(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFuel ,pred

=6.1x10° x (P, )" x1.04—0.031, R? = 0.99 (A7-2)

The numerical values of “1.04” and “0.031” are the correction factors. Equation (A7-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A7-2) predicted versus measured fuel use rates
is shown in Figure A-27(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.07 mg/s, which is
small compared to mean fuel use rates of 1.4 mg/s. The R? for the linear fit is 0.99. The R?
value of 0.99 is a significant improvement compared to the R? value of 0.72 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-27 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2002 Chevrolet Silverado measured during 110 miles of
driving in the Raleigh, NC area.

A7.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-28(a), A-28(c), and A-28(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

MGy, preg =1.3x107 % (B,,2)" " x2.4-0.008, R? = 0.68 (A7-3)

The numerical values of “2.4” and “0.008” are the bias correction factors. Both the fitted scaling
parameter of 1.3x10*! and the power parameter of 1.78 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A7-3) predicted versus measured CO emission rates is shown in
Figure A-28(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.39 is
higher compared to the R? value of 0.32 for the VSP-based model shown in Figure A-26(b).

Figure A-28(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0 to approximately 0.01 mg/s follow a power trend versus Puxr. There also appear other
clusters each containing a small portion of data. This vehicle has 4-gear automatic transmission.
These clusters might be associated with gear selection. Although stratification of these data
might be possible based on additional I0Vs, these clusters cannot be discriminated based on
Pwmxr alone. For all data, the fitted model is:

M. reg =5.9%x107° x (B, 2)** x1.2—-0.0002, R? = 0.87 (AT-4)

The numerical values of “1.2” and “0.0002” are the bias correction factors. Both the fitted
scaling parameter of 5.9x107° and the power parameter of 1.13 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A7-4) predicted versus measured HC emission rates is shown in
Figure A-28(d). The R?is 0.91 and is a significant improvement compared to the R? of 0.66
based on the VSP-based model, as illustrated in Figure A-26(c). Therefore, the I0V-based
model describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
28(e). The data appear to follow a power trend. The fitted model is:

My, preg = 9:5x107 x(B,,2)*" x1.6-0.0015, R? = 0.78 (A7-5)

The numerical values of “1.6” and “0.0015” are the bias correction factors. Both the fitted
scaling parameter of 9.5x10Y" and the power parameter of 2.73 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A7-5) predicted and measured NOx emission rates is shown in Figure
A-28(f). The R?is 0.77, which is higher than the R? of 0.46 of the VVSP-based model illustrated
in Figure A-26(d). Therefore, the IOV-based model is better than the EOV-based model in
predicting NOx emission rates.
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Figure A-28 Relationship between emission rates and the product of Manifold Absolute

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between

predicted and measured emission rates for a 2002 Chevrolet Silverado measured during 110

miles of driving in the Raleigh, NC area.
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A8 2010 Ford F150

For the 2010 Ford F150, more than 12,100 seconds of valid data were collected, which account
for more than 96 percent of raw data from the field measurements.

A8.1  Internally versus Externally Observable Variables

The relationship between Pumxr versus VSP is illustrated in Figure A-29. Average Puxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-29(b):

Pu.r = 36600xVSP*“, for VSP>0, R? = 0.95 (A8-1)

Pmxr is 32,100 kPa-rev/min for negative VSP, and is corrected to no less than 32,100 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 36,600 and power
parameter of 0.44 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A8.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
30(a) through A-30(d). For each VVSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.68, 0.03, 0.43, and 0.16, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-29 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2010 Ford F150. Error bars
indicate 95 percent confidence intervals.
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Figure A-30 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 2010 Ford F150.
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A8.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-31(a) and
A-31(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.86 and 0.69, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-31(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFueI, pred

=3.8x10° x(P,_)""" x0.99—(~0.022) , R? = 0.99 (A8-2)

The numerical values of “0.99” and “-0.022” are the correction factors. Equation (A8-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A8-2) predicted versus measured fuel use rates
is shown in Figure A-31(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.18 mg/s, which is
small compared to mean fuel use rates of 1.8 mg/s. The R? for the linear fit is 0.99. The R?
value of 0.99 is a significant improvement compared to the R? value of 0.68 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-31 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 2010 Ford F150 measured during 110 miles of driving
in the Raleigh, NC area.

A8.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-32(a), A-32(c), and A-32(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

M prea =1.4x10° x (B, )" x144-405, R? = 0.48 (A8-3)

The numerical values of “144” and “405” are the bias correction factors. Both the fitted scaling
parameter of 1.4x10® and the power parameter of 1.29 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A8-3) predicted versus measured CO emission rates is shown in
Figure A-32(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.06 is
slightly higher compared to the R? value of 0.03 for the VSP-based model shown in Figure A-
30(b).

Figure A-32(c) illustrates the relationship between measured HC emission rates versus Puxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from 0 to approximately 6 mg/s follow a power trend versus Pmxr. There also appear other
clusters each containing a small portion of data. This vehicle has 4-gear automatic transmission.
These clusters might be associated with gear selection. Although stratification of these data
might be possible based on additional I0Vs, these clusters cannot be discriminated based on
Pwmxr alone. For all data, the fitted model is:

M. ores =2.0x10° x(P,,,2)"*’ x1.6-0.60, R* = 0.80 (A8-4)

The numerical values of “1.6” and “0.60 are the bias correction factors. Both the fitted scaling
parameter of 2.0x10 and the power parameter of 1.20 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A8-4) predicted versus measured HC emission rates is shown in
Figure A-32(d). The R?is 0.67 and is a significant improvement compared to the R? of 0.43
based on the VSP-based model, as illustrated in Figure A-30(c). Therefore, the IOV-based
model describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
32(e). The data appear to follow a power trend. The fitted model is:

My, preg =5-0x10° x (P, 1) ¥ x84-1.1, R?=0.45 (A8-5)

The numerical values of “8.4”” and “1.1” are the bias correction factors. Both the fitted scaling
parameter of 5.0x10® and the power parameter of 1.33 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A8-5) predicted and measured NOx emission rates is shown in Figure
A-32(f). The R?is 0.24, which is higher than the R? of 0.16 of the VVSP-based model illustrated
in Figure A-2(d). Therefore, the IOV-based model is better than the EOV-based model in
predicting NOx emission rates.

72



On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for
Vehicle-Specific Fuel Use and Emissions Modeling — 2013-034

. y=1B-06x!%

0 ‘J :--;I-“:r- _:- e 1
0 200000 400000 600000
MAPXRPM

(a) Measured CO Emission Rates
versus the Product of MAP and RPM

35 4
530 -
Eos - y = 2B-06x120
o 20 - R2=0.80
s
5 15 -
£ 10 -
£ 5
E 0 | T 1

0 200000 400000 600000

MAPXRPM

(c) Measured HC Emission Rates
versus the Product of MAP and RPM

=20 -
=]
E
= 15 -
Z
3z 107 y = 5E-08x13
5 5. R*=0.45
=
=
E 0 i = — 1
0 200000 400000 600000

MAPXRPM

(e) Measured NO, Emission Rates
versus the Product of MAP and RPM

E
g
o }! = X
@] R*=0.06
=
2
=
=
2
~ 0 F——— T T 1
0 2000 4000 6000

Measured CO (mg/s)

(b) Predicted versus Measured CO
Emission Rates

35

<30 -

E s - _

O o y =X

= -0 R2=0.67

= 15

4]

510 -

s

a5 0 “ T T 1
0 10 20 30 40

Measured HC (mg/s)

(d) Predicted versus Measured HC
Emission Rates

Predicted NOx (mg/s)

0 5 10 15 20
Measured NOx (mg/s)

(f) Predicted versus Measured NO,
Emission Rates
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A9 1998 Chevrolet S10

For the 1998 Chevrolet S10, more than 11,300 seconds of valid data were collected, which
account for more than 95 percent of raw data from the field measurements.

A9.1  Internally versus Externally Observable Variables

The relationship between Pumxr versus VSP is illustrated in Figure A-33. Average Puxr Values
are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval. This range
accounts for over 99% of measured vehicle activity. At negative VSP, there is no load on the
engine and, thus, Pvxr is approximately constant. For increasing positive VSP, Puxr typically
increases monotonically.

A regression analysis was conducted for Puxr versus VSP for positive VSP values, as shown in
Figure A-33(b):

P, =43200xVSP®®  for VSP>0, R? = 0.97 (A9-1)

Pmxr is 33,100 kPa-rev/min for negative VSP, and is corrected to no less than 33,100 kPa-
rev/min for positive VSP. The p-values for the estimated scaling parameter of 43,200 and power
parameter of 0.35 are both less than 0.001, indicating statistical significance. Pwxr is highly
correlated with VSP. Thus, Puxr IS a good surrogate for engine power demand for this vehicle.

A9.2  Fuel Use and Emission Rates versus Externally Observable Variables

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-
34(a) through A-34(d). For each VVSP bin, there is substantial variability in fuel use and emission
rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-
percentile, and 97.5-percentile of one second values within each VVSP bin. The R? for fuel use
and emissions of CO, HC, and NOy are 0.68, 0.03, 0.10, and 0.20, respectively. Thus, VSP is
shown to be a good basis for estimating fuel use, and is able to explain some of the variability in
1 Hz emission rates. Furthermore, VSP is accurate in quantifying the mean trend in these rates.
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Figure A-33 Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions
per Minute (RPM) versus Vehicle Specific Power (VSP) for a 1998 Chevrolet S10. Error
bars indicate 95 percent confidence intervals.
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Figure A-34 Comparison between measured and predicted fuel use and emission rates based on
the Vehicle Specific Power-based model for a 1998 Chevrolet S10.
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A9.3  Fuel Use versus Internally Observable Variables

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-35(a) and
A-35(b), respectively. The coefficients of determination for fuel use as a power function of MAP
and RPM are 0.78 and 0.80, respectively. The p-values for the scaling and power parameters for
both power regressions were less than 0.001, indicating statistical significance. Therefore, each
of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of
the variation in fuel use.

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel
use rate is better explained by Pmxr, as shown in Figure A-35(c). The predicted fuel use with
bias corrections in terms of Pmxr in the form of Equation (5) is:

(5)
mFuel ,pred

=3.6x10° x (P, )" x1.01-0.004 , R2 = 0.98 (A9-2)

The numerical values of “1.01” and “0.004” are the correction factors. Equation (A9-2) is used
for predicting fuel use rates based on Pmxr for this vehicle.

A parity plot comparison between the Equation (A9-2) predicted versus measured fuel use rates
is shown in Figure A-35(d), based on Equation (6). The data points follow a linear trend. The
slope is 1 and the intercept is 0. The standard deviation of the residuals is 0.12 mg/s, which is
small compared to mean fuel use rates of 1.2 mg/s. The R? for the linear fit is 0.98. The R?
value of 0.98 is a significant improvement compared to the R? value of 0.68 based on the VSP-
based approach. Therefore, the IOV-based model performs better than the EOV-based modal.
There are some artifacts of the scatter plot that imply that the residual error may have non-
constant variance with respect to the magnitude of fuel use rate. For very high fuel use rate the
sample size is very small. However, from a practical perspective, this model is highly effective
in predicting fuel use rate without any average bias.
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Figure A-35 Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine
Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted
versus measured fuel use rates for a 1998 Chevrolet S10 measured during 110 miles of
driving in the Raleigh, NC area.

A9.4  Emission Rates versus Internally Observable Variables

The relationships between emission rates of CO, HC, and NOx versus and Pmxr are shown in
Figures A-36(a), A-36(c), and A-36(e), respectively. For CO, most of the data points follow a
power trend. A small portion of data has much higher CO emission rates compared to the fitted
model. the IOV model based on Puxr for CO emission rates is developed similarly to the model
for fuel use rates. The model in the form of Equation (5) is:

MGy prea = 2.7x107 x (B, o )" x51-126 , R? = 0.33 (A9-3)

The numerical values of “51” and “126” are the bias correction factors. Both the fitted scaling
parameter of 2.7x107 and the power parameter of 1.44 have p-values of less than 0.001,
indicating statistically significance.
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A comparison of Equation (A9-3) predicted versus measured CO emission rates is shown in
Figure A-36(b). The data fit a line with slope of 1 and the intercept of 0. The R? value of 0.04 is
slightly higher compared to the R? value of 0.03 for the VSP-based model shown in Figure A-
34(b). Both the IOV- and EOV-based models are not well predicting the CO emission rates.

Figure A-36(c) illustrates the relationship between measured HC emission rates versus Pmxr.
There appear to be some clusters in this scatter plot. The majority of HC emission rates ranging
from O to approximately 5 mg/s follow a power trend versus Pmxr. There also appear other
clusters each containing a small portion of data. This vehicle has 4-gear automatic transmission.
These clusters might be associated with gear selection. Although stratification of these data
might be possible based on additional I0Vs, these clusters cannot be discriminated based on
Pwmxr alone. For all data, the fitted model is:

M. ored =3.6x10° x(P,,,2)"* x6.0-2.2, R?=0.30 (A9-4)

The numerical values of “6.0” and “2.2” are the bias correction factors. Both the fitted scaling
parameter of 3.6x10 and the power parameter of 1.07 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A9-4) predicted versus measured HC emission rates is shown in
Figure A-36(d). The R?is 0.23 and is a significant improvement compared to the R? of 0.10
based on the VSP-based model, as illustrated in Figure A-34(c). Therefore, the IOV-based
model describes the HC emission rates well, and is better than the EOV-based model.

The relationship between measured NOx emission rates versus Pmxr is illustrated in Figure A-
36(e). The data appear to follow a power trend. The fitted model is:

My, preg = 4-1x107% x (B, 2)** x6.0-5.7, R? = 0.54 (A9-5)

The numerical values of “6.0” and “5.7” are the bias correction factors. Both the fitted scaling
parameter of 4.1x10*2 and the power parameter of 2.34 have p-values of less than 0.001,
indicating statistical significance.

A comparison of Equation (A9-5) predicted and measured NOx emission rates is shown in Figure
A-36(f). The R?is 0.26, which is slightly higher than the R? of 0.20 of the \VSP-based model
illustrated in Figure A-34(d). Therefore, the IOV-based model is better than the EOV-based
model in predicting NOx emission rates.
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Figure A-36 Relationship between emission rates and the product of Manifold Absolute
Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between
predicted and measured emission rates for a 1998 Chevrolet S10 measured during 110 miles
of driving in the Raleigh, NC area.
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Part I1I: Implementation of Vehicle-Specific Fuel Use and Emissions
Models Based on Internally Observable Activity Data into Traffic
Microsimulation

Introduction

SwashSim, a microscopic traffic simulation program, has been in development over the last few
years, led by Dr. Washburn. SwashSim is based on a modern programming language (C# in .NET
Framework) and uses an object-oriented architecture. The object-oriented architecture allows the
simulation tool to define and model objects (e.g., vehicles, vehicle components, roadway
segments, drivers, etc.) much like they exist in reality. For defining the performance capabilities
of vehicles, SwashSim includes classes (i.e., object definitions) that model the power/drivetrain
capabilities of vehicles and determines acceleration capabilities. This ability is key to be able to
produce the inputs necessary for the 10V fuel and emissions estimation models.

Vehicle Dynamics Modeling in SwashSim

This section provides an overview of the vehicle dynamics modeling approach that was developed
and incorporated into SwashSim. This material can also be found in chapter 3 of “Principles of
Highway Engineering and Traffic Analysis” (Mannering and Washburn, 2012). The approach at
its most basic level determines maximum acceleration through the fundamental equation relating
tractive force to resistance forces as per

F=mXa+R,+ R +R, (3-1)

The tractive force, F, referred to here as available tractive effort, is taken as the lesser of maximum
tractive effort and engine-generated tractive effort. Maximum tractive effort is a function of
several of the vehicle’s physical characteristics (such as wheelbase, center of gravity, and weight)
and the roadway coefficient of road adhesion. Maximum tractive effort represents the amount of
longitudinal force that can be accommodated by the tire-pavement interface. Engine-generated
tractive effort is a function of engine torque, transmission and differential gearing, and drive wheel
radius.

The major resistance forces are aerodynamic, rolling, and grade. The equation for
determining aerodynamic resistance is

Ry =2 X Cpx Ap xV (3-2)

where
R, = aerodynamic resistance in Ib,
p = air density in slugs/ft3,
Cp = coefficient of drag (unitless),
Ar = frontal area of the vehicle (projected area of the vehicle in the direction of travel) in
ft?, and
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V' = speed of the vehicle in ft/s.

The coefficient of rolling resistance for road vehicles operating on paved surfaces is approximated
as

fri=0.01x(1+2) (3-3)

where
fr1 = coefficient of rolling resistance (unitless), and
V = vehicle speed in ft/s.

The rolling resistance, in Ib., is simply the coefficient of rolling resistance multiplied by W cos 6,
the vehicle weight acting normal to the roadway surface. For most highway applications 6 is
very small, so it can be assumed that cos 6, = 1, giving the equation for rolling resistance (R,;) as
presented in Equation R,; = f,; X W (3-4.

Ry = frl x W (3'4)

Grade resistance is simply the gravitational force (the component parallel to the roadway) acting
on the vehicle. The expression for grade resistance (R,;) iS

Ry =W X sinf, (3-5)

As in the development of the rolling resistance formula, highway grades are usually very small, so
sin 6, =tan 6,. Thus, grade resistance is calculated as

Ry=W X tanf;, =W X G (3-6)

where
G = grade, defined as the vertical rise per some specified horizontal distance in ft/ft.

Grades are generally specified as percentages for ease of understanding. Thus a roadway that rises
5 ft vertically per 100 ft horizontally (G = 0.05 and 6, = 2.86°) is said to have a 5% grade.
The relationship between vehicle speed and engine speed is

V= 2XTTXNeX(1—1) (3_7)

€o

where
IV = vehicle speed in ft/s,
n, = engine speed in crankshaft revolutions per second,
i = slippage of the drive axle, and
&, = overall gear reduction ratio

The overall gear reduction ratio is a function of the differential gear ratio and the transmission gear
ratio, which is a function of the selected transmission gear for the running speed. This equation
can be rearranged to solve for engine speed given the current vehicle speed (if vehicle speed is
zero, engine speed is a function of throttle input).
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With the calculated engine speed, the torque being produced by the engine can be
determined from the torque-engine speed relationship. Power is the rate of engine work, expressed
in horsepower (hp), and is related to the engine’s torque by

2XTIX Mg XN

hp, = 2 ee (3-9)

where
hp. = engine-generated horsepower (1 horsepower equals 550 ft-1b/s),
n, = engine speed in crankshaft revolutions per second, and
M, = engine torque in ft-1b.

The engine-generated tractive effort reaching the drive wheels is

__ MeXxgoxng

F, (3-9)

r
where
F, = engine-generated tractive effort reaching the drive wheels in Ib,
M, = engine torque in ft-1b.
&y = overall gear reduction ratio,

ng = mechanical efficiency of the drivetrain, and
r = radius of the drive wheels in ft.

It should be noted that since torque and horsepower are directly related, if only a power-engine
speed relationship is available, this can be converted to a torque-engine speed relationship by using
Equation 3-8.
For determining vehicle maximum acceleration, Equation F =mXa+ R, + R + Ry
(3-1 is rearranged and an additional term, y,,, to account for the inertia of the vehicle’s
rotating parts that must be overcome during acceleration, is included as follows.

F-YR

= (3-10)

Ym. referred to as the mass factor, is approximated as presented in Equation Ym = 1.04 +
0.0025 X &2 (3-11.

Vi = 1.04 4+ 0.0025 X €2 (3-11)

82



On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for
Vehicle-Specific Fuel Use and Emissions Modeling — 2013-034

Initial Testing of SwashSim Vehicle Dynamics Modeling

Test Vehicle

Initial testing of the implementation of the vehicle dynamics modeling approach in SwashSim was
done with a 2003 Honda Civic LX, a light duty passenger vehicle (pictured in Figure 3-1).

Figure 3-1. 2003 Honda Civic LX

Table 3-1 lists additional vehicle information that is needed for setting up the vehicle in SwashSim.

Table 3-1. 2003 Honda Civic LX Vehicle Characteristics Data

Dimensions
Height (ft) 4.59
Width (ft) 5.56
Length (ft) 14.56
Weight (Ib) 2,474
Wheel Radius (ft) 1.03
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Engine
4 cylinder, 1.7 L
Maximum Torque (Ib-ft) 105
Maximum Power (hp) 115
Transmission (automatic)
Gear Ratios
Gear1 2.722
Gear 2 1.516
Gear 3 0.975
Gear4 0.674
Differential Gear Ratio 4.07

Additionally, the torque/power versus engine speed relationship needs to be specified in
SwashSim. This relationship for the 2003 Honda Civic is shown in Figure 3-2. Note that the
lower (blue) curves correspond to the data collection vehicle used in this study.

Power(hp)
(sq)-3) anbioy

4 s
Engine Speed (RPM x1000)
Figure 3-2. Torque/Power — Engine Speed Curves for 2003 Honda Civic LX (E-Trailer, 2014)
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Test Equipment

An OBD scantool (i.e., OBDLink SX Scan® Tool (Figure 3-3) with OBDWiz® diagnostics
software (Figure 3-4)) was used to record OBD parameters at approximately 1 Hz frequency,

including RPM, engine load, intake manifold absolute pressure, vehicle speed and time stamp.
- =) :

Figure 3-3. (a) ODLink SX® Scan Tool cable and (b) cable attached to the OBD-II port of test
vehicle

@ OBDwiz

File View Window Connection Tools Help

| stiptat, 9 DatsLoggrg | 7] s | 7 TopSias
S
O Record ’ Play ii Pause »FastForward\m Stop

@ Setfings

Diagnostics:

() TDL Recording () CSV Recording @ Al
Q Compress TOL Data

Wortos || ey og File Pai C:Temp

@ Select temstoLog

Dastboard || Display: [¥) Show Supported PIDs Only
ekt Fil Tt

Logs Selecten  FID Description i
SEOM Caoulaed loadvalee B

SAE 05 Engine coolznt temperature:
SAE (06 Shortterm fuel % trim - Bank 1
SAE (7 Long term fuel % frim - Bank 1
SAE (08 Short term fuel % trim - Bank 2
SAE (08 Long term fuel % frim - Bank 2
SAE (x0A Fue! rail preasure (gauge)

SAE (0B Intake manifold absolute pressure
SAE (x0C Engine RPM

SAE(x0D Vehicle speed

SAE (x0E lonition fiming advance for #1 cylinder
SAE OlF Intake &ir temperature

SAE (10 Mass airflow rate

Figure 3-4. Screen capture of the OBDWiz® Diagnostics Software (OBDWiz® by OCTech,
LLC, http://www.obdsoftware.net/OBDwiz.aspx)

e
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Data Collection

OBD data were collected from a section of freeway and a section of arterial. The freeway section
was a six-mile-long section of Interstate 75 (I-75) between the cross streets of SW Archer Road
and NW 39" (depicted in Figure 3-5) The posted speed limit for this section is 70 mi/h.

SNV BAVE == LNW-16th-AVE

et SI{V\.JE)\\'\:P\T s

Figure 3-5. Aerial Photo of Freeway Section for OBD Data Collection

The arterial section is a little over a mile in length. It is along a section of Newberry Road (SR-
26) between the cross streets of NW 98th Street and NW 122" Street (depicted in Figure 3-6).
The posted speed limit is 45 mi/h.
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Figure 3-6. Aerial Photo of Arterial Section for OBD Data Collection
Both test sections had an approximately 0.5% grade in the travel direction. During the data
collection effort, a total of 3,355 seconds of valid OBD data were collected in the field for three
different types of driving behavior, ranging from non-aggressive, moderate, and aggressive. This
stratification was done in order to observe and account for these driver type differences that affect
the internal engine variables of interest.

N

Field Data Results and Analysis

Figure 3-7 is a plot of the product of MAP x RPM versus VSP.
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Figure 3-7. MAP x RPM versus VSP
Figure 3-8 is a plot of the product of MAP and RPM versus calculated engine load.
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Figure 3-8. MAP x RPM versus Calculated Engine Load
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Consistent with Frey et al. (2010), the field data support a power model fit to the MAP x RPM
versus VSP relationship and a linear model fit to the MAP x RPM versus calculated engine load.
A regression analysis of the data in Figure 3-7 yields the following model with an R? value
of 0.72.
MAP X RPM = 107458 x VSp0.1553 (3-12)

With VSP calculated as

T
VSP = 0.278 X V [0.305 X a +9.81 x (sin (a X tan W)) + 0.132] +0.0000065 x V3
(3-13)

where
VSP = Vehicle Specific Power (kw/ton)
V' = Vehicle Speed (km/h)
a = Vehicle Acceleration (km/h/s)
r = Roadway Grade (%)

With RPM being generated in SwashSim through the vehicle dynamics equations, MAP is simply
calculated in SwashSim as

MAP = (107458 x VSP%1553)/RPM (3-14)
A regression analysis of the data in Figure 3-8 yields the following model with an R? value of 0.76.

MAP X RPM = 3556.4 X Calculated Engine Load — 66189 (3-15)
The calculated engine load value is then obtained by rearranging the above equation, as follows.

Calculated Engine Load = (MAP X RPM + 66189)/3556.4 (3-16)

Verification of SwashSim Implementation

Simulation runs for a multilane highway of 1.5 miles in length were performed for varying desired
speeds of 30 to 70 mi/h, to cover the range of speeds for both arterial and freeway conditions. As
Figure 3-9 and Figure 3-10 confirm, the SwashSim outputs match with the models developed from
the field data.

89



On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for
Vehicle-Specific Fuel Use and Emissions Modeling — 2013-034

450000
- >
*
& *
+
*
350000
AR v’ e Hy v,
e RE 2. TRIVR g . ®
o ¢ ® ** e e
** AL N R
0 . P e % " X o ¥ * Freeway
3 “e 4 * 2 A ! RS I *» g Field Data
£ .8 t ‘.l
~ * > * ° ¢
s 250000 0 % a s "% iow :
Q * ” * & *e . k3
- LAY SERRT 7 B, }“ &
* *e TRt 3 o, ¥ o ¢
* e X\ * o * .
s ¢ 8, *% &% o
= ue L [ &R )
b 200000 - & o m s’ inga o, ¢ »¢ _ #Arterial
& "l e Field Data
£ .f’,
g * s 0.1553
s 150000 ; LR y 1(37458x
. i R*=0.72
. 'S .
$, !
; A :
100000 i o ° M SwashSim
‘ LJ .:\ ‘Q
L g 1
”~ *»* “. :0':. * %
s000 L . 8o o 3 . }o’
4 o *e
* *
0
0 10 20 30 40 50
VSP (kw/ton)

Figure 3-9. Comparison of Field and SwashSim MAP x RPM versus VSP Data
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Figure 3-10. Comparison of Field and SwashSim MAP x RPM versus Calculated Engine Load
Data

Another verification between the OBD field data and simulation results was performed to observe
the relationship between engine RPM and vehicle speed, both of which are directly related to
selected transmission gear. Figure 3-11 shows these results.
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Figure 3-11. Comparison of Field and SwashSim Engine Speed versus Vehicle Speed
Relationship

It can be observed from Figure 3-11 that SwashSim does a very good job of replicating the 4-speed
transmission of the OBD data collection vehicle.

Implementation of Test Vehicles into SwashSim

Simulation Setup

The following figures show the various input screens used in SwashSim to specify the necessary
inputs to facilitate the IOV-based EU&E approach.
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Settings

- Transmissions
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ne Changing
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2011 Ford F150 7 " Automo... | 3 19 1 1931 B575 635 5200 129
2009 Honda Civic 2 W~ Automo... = | 2 ~ 13 1 1478 575 4708 3020 104
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»
oK | Cancel |

Figure 3-12. SwashSim basic descriptive information and vehicle dimensions input screen.

The input screen shown above handles the specification of vehicle dimensions and
classification information. Additionally, the ID’s of the associated engine and transmission are
specified on this screen.

Settings
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-
oK Cancel

Figure 3-13. SwashSim basic engine information input screen.
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The input screen shown above handles the specification of engine information. This screen links
to the input screen shown below, through which the torque-engine speed relationship is specified.

Engine Torque Data
Selected Engine Id: 2 Update Graph |
Engine Label: 2008 Chevy Impala Engine
250 250 — Torque
- - Power
Da_ta Engine Torque Power
Poirt Speed ftdb) )
H# {rev/min) o
» 0 0 0 J T L
om 20 - O fawo
2 1000 10 14 S/ AN
3 1050 m 2 / '
4 1250 129 30 \
__ 1504 / \+150
5 1480 148 41 =] .-"I =
3 1750 166 55 3 / P
7 2000 175 6 g i 3
=
1 2500 192 91 100+ / 100
9 3000 201 114 /
10 3500 210 139 I'!
1 4000 214 162 . 50 ."II 50
/
/
||lII
Exit and Exit without 0+ T T —-0
Save Changes Saving Changes -50 1950 3950 5950
Engine Speed (revs/min)

|
Figure 3-14. SwashSim engine torque/power versus engine speed relationship input screen.

The input screen shown below handles the specification of transmission information.
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Figure 3-15. SwashSim transmission information input screen.
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The input screen shown below handles the specification of the parameter values for the
IOV-based EU&E models discussed in Part 2 of this report.

Settings
- General G D ; im InputsiStart
H Fil. by rojects washSim np
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MAP % RPM = min(a X VSP? X ¢,d) TsbleRou5
—Select Vehicle

— Emission and Fuel Consumption Rate Equation Parameter Values ———————————————

18] | Vehicle Name a b {Power) c (Bias d (Bias

1 2006 Honda Civic Si (Scaling) Comection Mutt.) | Comection Add.)

» 2 2008 Chevy Impala »  Carbon Monoxide 0.00085 07 370 87
3 1398 Buick Century Hydrocarbons 1.8E06 0.99 48 045
. 2004 Chevy Tahos Nitrogen Oxides 1.3E-08 146 43 -1
5 2002 Chevy Siverado Fuel Consumption 2.6E05 0.54 118 £0.18
[ 1998 Chevy 510 Blazer MAP x RPM 44300 0.42 1 40000
N T I

0K Cancel

Figure 3-16. SwashSim EU&E model parameters input screen.

Test Results

The following figures are based on fuel use and emissions output from a sample SwashSim
simulation run. The results are consistent with the implemented 10V-based EU&E estimation
equations from Part 2 of this report.
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Figure 3-18. SwashSim sample results for NOx emissions versus MAP x RPM.
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Figure 3-19. SwashSim sample results for HC emissions versus MAP x RPM.
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Figure 3-20. SwashSim sample results for CO emissions versus MAP x RPM.
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