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ABSTRACT 

The work reported here is for a study that aimed to: (1) evaluate the concordance between 

internally observable variable (IOV) based and externally observable variable (EOV) based 

predictors of engine power demand; (2) develop predictive models for vehicle energy use and 

emissions (EU&E) based on IOVs; (3) evaluate models for vehicle EU&E based on IOVs by 

comparing to models based on EOVs; and (4) implement the new predictive models for emissions 

and fuel use based on IOV’s into SwashSim, a traffic microsimulation software program  Based 

on this research, predictive models for vehicle EU&E are evaluated and recommendations are 

offered regarding choices among these models.  The implementation of the IOV-based models into 

SwashSim demonstrates how this capability can be added to any microscopic traffic simulation 

tool. 
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Part I: Introduction 

Background 

Transportation accounts for 28% of all U.S. energy use (U.S. EIA, 2015).  Highway transportation 

accounts for 32% of national annual emissions of nitrogen oxides (NOx), 50% of carbon monoxide 

(CO), and 22% of volatile organic compounds (VOC) (U.S. EPA, 2015).  This increasing concern 

regarding air quality has motivated the need for accurate estimates of micro-scale vehicle EU&E.  

This is especially important because of the increasing need to assess the environmental 

effectiveness of traffic management and operation strategies such as ramp metering, managed 

lanes, speed harmonization, and even connected vehicle systems on EU&E (Washburn et al., 

2013). 

Vehicle fuel use and emission rates are related to vehicle specific power (VSP) (Frey et al., 

2008). VSP accounts for changes in vehicle kinetic and potential energy, rolling resistance, and 

aerodynamic drag (Jimenez-Palacios, 1999).  For a given vehicle, VSP is a function of vehicle 

speed, acceleration, and grade.   

Frey et al. (2010) conducted a detailed evaluation of the explanatory power and goodness-

of-fit of 14 alternative modeling approaches for predicting vehicle EU&E based on use of EOVs 

compared with IOVs.  An EOV can be observed from outside of a vehicle.  Examples include 

vehicle speed, vehicle acceleration, and road grade.  An IOV can be observed from inside a vehicle.  

Examples include manifold absolute pressure (MAP), engine speed in revolutions per minute 

(RPM), and others.  Many IOVs are reported by a vehicle electronic control unit (ECU) via an on-

board diagnostic (OBD) interface.  Such IOVs can be recorded in real time using an OBD 

“scantool.”  Tailpipe emission rates were measured using a portable emission measurement system 

(PEMS).  Models of fuel use and emission rates based on engine data, such as MAP and RPM, are 

more predictive than those based only on VSP (Frey et al., 2010).   

Although VSP-based models are now widely used and offer significant explanatory power 

for fuel use and emission rates, models based directly on OBD data have the potential for better 

goodness-of-fit.  For example, a VSP-based model for fuel use rate for a 2005 Chevrolet Cavalier 

had a coefficient of determination (R2) of 0.87.  However, an IOV model based on PM×R, which is 

the product of MAP and RPM, had a higher R2 of 0.99 (Frey et al., 2010).  Such improvement was 

expected, since the MAP and RPM are significant factors affecting fuel injection control and thus, 

are indicators of engine power demand (Heywood, 1998).  Therefore, the direct use of IOVs based 

on OBD data may lead to improved estimates of vehicle fuel use and emission rates.  However, 

tailpipe emission rates are also significantly influenced by the operational efficiency of the 

catalytic converter, for which the effect was not quantified (Frey et al., 2010).  Models for emission 

rates of specific pollutants based on IOVs may have an R2 not as good as for fuel use.  The latter 

is not significantly influenced by the catalytic converter. 
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There is increasing interest in developing applications that use OBD data.  In-vehicle data 

collection for proof-of-concept and feasibility assessment can be costly.  There is growing demand 

for a traffic simulation platform that enables developers to test and evaluate products and for an 

improved method for quantifying EU&E to support transportation planning.  A traffic simulation 

tool that is capable of using EU&E models based on IOVs would be of significant benefit to the 

transportation and environmental engineering communities.  Historically, such tools determine 

vehicle acceleration rates through relatively simple methods that do not involve knowing the status 

of the vehicle power/drivetrain (McTrans, 2012).  Concurrently, Washburn is developing a new 

traffic microsimulation program that explicitly models the power/drivetrain components of 

vehicles and thus can utilize IOV-based EU&E models.  Furthermore, emission rate models based 

on IOVs could, in the future, be incorporated into vehicle electronic control units (ECU) to enable 

provision of feedback to drivers regarding how vehicle operation affects emissions.  The 

integration of OBD data into vehicle fuel use and emission models provides more capabilities for 

predicting EU&E based on vehicle activity.  

This report describes the development of models for estimating vehicle fuel use and 

emission rates based on IOVs that can be obtained from OBD data, and to demonstrate that IOV 

parameters can provide estimates of engine power demand consistent with the VSP approach based 

on EOVs.  In addition, this work is intended to evaluate the performance of models for estimating 

vehicle fuel use and emission rates based on IOVs, such as PM×R, compared to models based on 

EOVs, such as VSP.  Additionally, this report describes the implementation of this IOV-based 

approach for estimating EU&E into a traffic microsimulation program.  This implementation 

approach can be used as a model for other traffic microsimulation programs. 

Objectives 

The specific research objectives are to: (1) evaluate the concordance between IOV- and EOV-

based predictors of engine power demand; (2) develop predictive models for vehicle EU&E based 

on IOVs; (3) evaluate models for vehicle EU&E based on IOVs by comparing to models based on 

EOVs; and (4) implement the new predictive models for emissions and fuel use based on IOV’s 

into SwashSim, a traffic microsimulation software program. 

Scope 

The scope of work completed includes the following: 

• Measurements were made for fuel use, CO2, CO, HC, and NOx. 

• Measurements were made on ten selected light-duty gasoline vehicles, including six 

passenger cars (PCs) and four passenger trucks (PTs).  

• IOV- and EOV-based predictive models were developed for fuel use and emissions of 

CO, HC, and NOx for each of the ten selected vehicles. 



 

3 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

• Typically less than five percent of total data collected were excluded after quality 

assurance screening. 

• Incorporation of test vehicles into a traffic microsimulation program, SwashSim.  This 

includes characteristics such as dimensions, drive/powertrain details, and EU&E IOV-

based models.  

 

The work here focused on specific light-duty gasoline vehicles, and thus did not include a variety 

of other types of vehicles in the United States. 
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Part II: Development of Vehicle-Specific Fuel Use and Emissions Models 

Based on Internally Observable Activity Data 

Method 

Measurements and modeling were made on ten light-duty gasoline vehicles. The methodology 

includes study design, instruments, data collection, quality assurance and quality check, and data 

analysis. 

Study Design 

Field measurements of 10 light-duty gasoline vehicles have been conducted, including 6 passenger 

cars (PCs) and 4 passenger trucks (PTs).  The selected vehicles vary by age, mileage, and engine 

displacement.  Specifications of the selected vehicles are shown in Table 2-1.  On average, the 4 

PTs have 80% higher engine displacement, 70% higher curb weight, and 30% lower rated 

combined fuel economy compared to the 6 PCs. 

For each vehicle, data were collected based on 110 miles of driving on four routes in the 

Raleigh, NC and Research Triangle Park, NC area, which is shown in Figure 2-1.  These routes 

were designed in a prior study and that are used as a consistent basis for measuring vehicle activity, 

energy use, and emissions (Frey et al., 2008).  Routes A and C are alternative paths between North 

Carolina State University (NCSU) and North Raleigh (NR), and Routes 1 and 3 are alternative 

paths between NR and RTP.  Routes A and 3 are comprised of major and minor arterials.  Routes 

C and 1 additionally include freeway segments.  These routes include local, minor arterial, major 

arterial, and freeway roads, with speed limits ranging from 25 mph to 70 mph.  The selected routes 

have road grades ranging between plus and minus 10 percent.  Thus, vehicle data collection 

includes a wide range of road types, traffic conditions, speed, acceleration, and grade. 
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Table 0-1  Specifications of Ten Selected Measured Vehicles 

Year Make Model Typea 

Number 

of 

Cylinders 

Engine 

Displace-

ment 

(liters) 

Curb 

Weight 

(lb) 

Combined 

Rated Fuel 

Economy 

(mpg) 

2005 Mazda 6 PC 4 2.3 3200 23 

2008 Chevrolet Impala PC 6 3.5 3600 22 

2004 Pontiac Grand Am GT PC 6 3.4 3100 21 

2001 Volvo S40 PC 4 1.8 2800 23 

2009 Honda Civic PC 4 1.8 2800 29 

1998 Buick Century PC 6 3.1 3300 21 

2002 Chevrolet Silverado PT 8 4.8 4900 16 

2011 Ford F150 PT 8 4.6 5000 17 

1998 Chevrolet S10 PT 6 4.3 4600 16 

2004 Chevrolet Tahoe PT 8 5.3 6800 16 

a Vehicle type: PC = Passenger Car, including sedans; PT = Passenger Truck, including 

SUVs and pickup trucks. 

 



 

6 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

 

Figure 0-1  Map of the Selected Routes in Raleigh and Research Triangle Park (RTP) Area. 

  



 

7 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

Instruments 

The following instruments were used during the measurements: 

• An OBD scan tool 

• A portable emission measurement systems (PEMS) 

• Multiple Garmin 76CSx global position system (GPS) receivers.  

More details on each of the key instruments are given below. 

On-Board Diagnostic Scantool 

An OBD scantool, OBD Pro hardware and ScanPro software, was used to obtain OBD parameters 

at approximately 1 Hz frequency, including MAP, RPM, intake air temperature (IAT), vehicle 

speed, mass air flow (MAF) and mass fuel flow (MFF) for the 10 selected vehicles.  The OBD 

scantool was connected to the vehicle OBD-II port and read selected OBD parameters via the 

vehicle electronic control unit.  A laptop was used to record the data.  Figure 2-2 shows the OBD 

scantool. 

Portable Emission Measurement System 

The OEM-2100 Axion PEMS manufactured by GlobalMRV was used to measure the exhaust 

composition.  The Axion system is comprised of two parallel five-gas analyzers and an on-board 

computer.  The two parallel gas analyzers simultaneously measure the exhaust volume percentage 

of CO, carbon dioxide (CO2), and HC using non-dispersive infrared (NDIR) , and nitric oxide 

(NO) and oxygen (O2) using electrochemical cell.   

The measured exhaust emission concentrations for the same type of PEMS were compared 

to a reference method by Battelle (2003) using a chassis dynamometer.  The measured 

concentrations for CO2, CO, and NO from PEMS were within 10% of the reference method.  For 

HC, the concentrations from PEMS were biased low by a factor of approximately 2 due to 

difference in detection methods. 

Prior to each measurement, the Axion System gas analyzers were calibrated using a BAR-

97 high concentration calibration gas mixture.  During measurement, the gas analyzers were 

“zeroed” using ambient air every 10 minutes to prevent instrument drift (Frey et al., 2008).  

The Axion System is designed to measure emissions during the actual use of the vehicle or 

equipment in its regular daily operation.  The monitoring system weighs approximately 35 lbs.  

The system typically runs on 12V DC vehicle electricity.  The power consumption is 5 to 8 Amps. 

Figure 2-3 shows the deployment of the Axion PEMS in the vehicle, and the connection of the 

Axion PEMS exhaust sampling line to the vehicle exhaust. 
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Figure 0-2  Pictures of On-Board Diagnostics Connection and Data Acquisition Laptop. 

 

 

Figure 0-3  Pictures of Portable Emission Measurement System (PEMS). 

 

Garmin Global Position System Receivers 

Garmin 76CSx GPS receivers with barometric altimeter were used to record vehicle position and 

elevation.  The GPS receivers measure position to within ±3 meters.  Relative changes in elevation 

are measured within ±1 meter.  Road grades for every non-overlapping consecutive 0.1 mile 

segment were inferred based on the method demonstrated elsewhere (Boroujeni and Frey, 2014).   

Figure 2-4 shows the deployment of GPS receivers during measurements.    
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Figure 0-4  Pictures of Garmin Global Position System (GPS) Receivers. 

 

Data Collection 

Preparation for field data collection included verification of the status of the PEMS, verification 

that all the parts and equipment were available, and laboratory calibration of the PEMS. Taking 

field measurements consisted of the installation of the instrumentation into a vehicle, data 

collection, and decommissioning. 

Typically a vehicle started from NCSU, and was driven along Route A to North Raleigh 

and then along Route 1 to RTP.  Afterwards, the vehicle returned to North Raleigh and NCSU 

following Route 1 and A.  The vehicle then was driven to North Raleigh and RTP again following 

Route C and 3, and returned via Route 3 and C.  The entire measurement took about 4 hours per 

vehicle. 

Quality Assurance 

The data measured from the PEMS, OBD, and GPS receivers were synchronized and combined.  

For quality assurance purposes, the combined data set was screened to check for errors or possible 

problems (Sandhu and Frey, 2013).  Typical errors include unusual air-to-fuel ratio and negative 

emissions values.  The errors were either corrected or the errant data records were not used for 

data analysis. 

Data Analysis 

For all vehicles, MFF was reported by the OBD.  The 1 Hz exhaust mass flow rate was estimated 

based on carbon balance using MFF, exhaust mole fractions of CO2, CO, and HC, molecular 

weight of fuel, and weight percent of carbon in the fuel.  Based on exhaust flow rate and pollutant 

concentrations in the exhaust, time-based emission rates of each pollutant were estimated (Frey et 

al., 2008).   
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For the purpose of evaluating the concordance between IOVs and EOVs as indicators of engine 

power demand, the relationship between PM×R and VSP was assessed.  For light-duty vehicles, 

VSP is estimated based on vehicle speed, vehicle acceleration, and road grade: 

 
3(1.1 9.81 0.132) 0.000302VSP v a r v    (2-1) 

Where: VSP is vehicle specific power (kW/ton); v is vehicle speed (m/s); a is vehicle acceleration 

(m/s2); and r is road grade (slope).  The relationship between PM×R and VSP was evaluated.  

A previously developed VSP-based modelling approach (Frey et al., 2002; Zhang, 2006) 

was used to estimate vehicle exhaust emissions.  In this approach, VSP values were stratified into 

14 bins and the average fuel use and emission rates were estimated for each of the 14 VSP bins.  

For each VSP value, the average fuel use and emission rates were compared with the measured 

rates.  A linear regression between the estimated average rates and the measured rates was used to 

evaluate the performance of the VSP-based model.  

The relationship between fuel flow and engine variables for a stoichiometric gasoline 

engine can be inferred based on factors that affect engine air flow.  Engine air flow is proportional 

to PM×R, as indicated by the commonly used “speed-density” method (Taylor, 1985; Vojtisek-Lom 

and Cobb, 1998).  Engine air flow is also influenced by engine displacement, number of strokes 

per cycle, IAT, and engine volumetric efficiency.  However, for a given engine with fixed engine 

displacement and number of strokes per cycle, IAT and engine volumetric efficiency tend to have 

much less relative variability than MAP and RPM; thus, the 1 Hz variability in engine air flow is 

mostly influenced by variability in MAP and RPM. 

Conventional gasoline engines typically run at stoichiometric combustion conditions with 

a few exceptions related to cold starts and high power demand during a trip (Heywood, 1998).  A 

cold start typically lasts for only a few minutes (Sentoff et al., 2010).  High power demand can 

occur in association with travel at high speed, at high acceleration, during hill climbing, or 

combinations of these but typically lasts only for a few seconds (Frey et al., 2008).  Thus, for most 

periods during a trip the engine runs stoichiometric and the fuel flow rate is proportional to engine 

air flow, which in turn is proportional to PM×R.  Therefore, relationships between fuel use rates and 

each of MAP, RPM, and PM×R were investigated. 

In previous work, various model function forms were evaluated for predicting fuel use and 

emission rates based on OBD data (Frey et al., 2010).  However, based on the data collected for 

the 10 measured vehicles, the fuel use and emission rates of CO, HC, and NOx typically follow a 

power trend over PM×R, as shown later.  Therefore, a multiplicative model was used: 

 
(2)

, ( )n

i pred M Rm b P   (2-2) 

Where: 
(2)

,i predm
 is a mass flow rate of species i predicted by Equation (2-2); i is either fuel use, CO, 

HC, or NOx; and b and n are fitted scaling and power parameters, respectively.   
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For models based on Equation (2-2), a log-transformation technique was used to estimate 

the scaling and power parameters.  However, bias is introduced when transforming back from the 

logarithm unit to the original arithmetic unit.  Therefore, a log-transformation bias correction 

factor, Clog, was used per the method demonstrated in (Newman, 1993): 

 
(3)

, log( )n

i pred M Rm b P C   (2-3) 

Where: 
(3)

,i predm
 is a mass flow rate of species i predicted by Equation (2-3); and Clog is the log-

transformation bias correction factor.  After log-transformation bias correction, the fuel use and 

emission rates at 1 Hz rate were predicted based on Equation (2-3).  However, because a log-

transformation in effect leads to an estimate of the median value, rather than mean values, an 

additional bias correction is needed (Frey et al., 2010).  For the purpose of bias correction, a linear 

regression was conducted between the Equation (2-3) predicted fuel use and emission rates and 

measured rates.  The form of this bias correction, including the bias correction slope aʹ and bias 

correction intercept bʹ, is:   

 
(3)

, ,' 'i pred i measurem a m b   (2-4) 

Where: ,i measurem
 is the measured mass flow rate of species i; and aʹ and bʹ are fitted slope and 

intercept, respectively.  Taken into account the analysis steps of Equations (2-3) and (2-4), 

Equation (2-3) may be written as: 

 
(5) '

, log( ) ''n

i pred M Rm b P C C  
 (2-5) 

Where: 
(5)

,i predm
 is the predicted mass flow rate of species i based on Equation (5); 

'

logC
 is the ratio 

of Clog over aʹ; and Cʹʹ is the ratio of bʹ over aʹ.  Thus, Equation (2-5) is a bias corrected version of 

Equation (2-3).  Equation (2-5) was used as the final form in predicting fuel use and emission rates 

based on PM×R.   

As an evaluation of goodness-of-fit, the predicted value from Equation (2-5) was compared 

to the measured value using a parity plot, in which each second of predicted value is plotted versus 

the corresponding measured value.  A linear trend line was fit to the parity plot to assess goodness-

of-fit.  If the fit is ideal, then the trend line would have a slope of 1 and an intercept of 0.  Thus, 

the goodness-of-fit was evaluated, in part, based on the R2 and standard error of the following: 

 
(5)

, ,1 0i pred i measurem m 
  (2-6) 

As described later, a substantial portion of the 1 Hz exhaust concentrations were below the gas 

analyzer detection limit, especially for CO and HC, for some vehicles.  As long as the mean value 

of the emission factor is for a concentration that is above the detection limit, the mean value is 

usually robust to the presence of non-detected measurements (Frey and Zhao, 2004).  However, if 

the mean emission rate is associated with a measured concentration below the detection limit, then 
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the resulting regression model will be subject to large relative random errors and will typically 

have a poor predictive capability, low R2, and high residual standard error.  Thus, as will be shown 

later, models with very poor goodness-of-fit are typically associated with a high proportion of very 

low exhaust concentrations.  Conversely, models fit to data with a high proportion of measured 

exhaust concentrations above the detection limit are expected to be statistically significant and to 

have better explanatory capability. 
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Results 

For each of the 10 vehicles, typically more than 12,500 seconds of valid data were collected, which 

account for more than 95 percent of raw data from the field measurements.  Errant data, primarily 

due to unusual air-to-fuel ratio, were excluded from the analysis. 

The results section includes an example of a 2005 Chevrolet Tahoe to demonstrate 

development of the models, and a synthesis summary of the evaluation of the models based on all 

10 vehicles. 

Example Detailed Results for a 2005 Chevrolet Tahoe 

A 2005 Chevrolet Tahoe is taken as an example to demonstrate the relationship between IOVs 

versus EOVs, and the relationship between fuel use and emission rates versus PM×R. 

Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure 3-1.  Average PM×R values are 

plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range accounts 

for over 99% of measured vehicle activity.  At negative VSP, there is no load on the engine and, 

thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically increases 

monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as 

shown in Figure 3-1(b):  

 
0.4238100M R VSPP   , for VSP>0, R2 = 0.97 (2-7) 

PM×R is 32,000 kPa-rev/min for negative VSP, and is corrected to no less than 32,000 kPa-rev/min 

for positive VSP.  The p-values for the estimated scaling parameter of 38,100 and power parameter 

of 0.42 are both less than 0.001, indicating statistical significance.  PM×R is highly correlated with 

VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures 3-2(a) 

through 3-2(d).  For each VSP bin, there is substantial variability in fuel use and emission rates, 

as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-percentile, and 

97.5-percentile of one second values within each VSP bin.  The R2 for fuel use and emissions of 

CO, HC, and NOx are 0.75, 0.32, 0.54, and 0.51, respectively.  Thus, VSP is shown to be a good 

basis for estimating fuel use, and is able to explain some of the variability in 1 Hz emission rates.  

Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure 2-5  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions per 

Minute (RPM) versus Vehicle Specific Power (VSP) for a 2005 Chevrolet Tahoe. Error bars 

indicate 95 percent confidence intervals. 

 

 

Figure 2-6  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2005 Chevrolet Tahoe measured during 110 

miles of driving in the Raleigh, NC area. 
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Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures 3-3(a) and 3-

3(b), respectively. The coefficients of determination for fuel use as a power function of MAP and 

RPM are 0.66 and 0.76, respectively.  The p-values for the scaling and power parameters for both 

power regressions were less than 0.001, indicating statistical significance.  Therefore, each of MAP 

and RPM can be an explanatory variable for fuel use, explaining a substantial amount of the 

variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in 

fuel use rate is better explained by PM×R, as shown in Figure 3-3(c).  Based on Equation (2), and 

as shown in Figure 3-3(c), the fitted equation for fuel use rate versus PM×R is: 

 
(2) 6 1.14

, 5.1 10 ( )Fuel pred M Rm P

   , R2 = 0.98 (2-8) 

The p-values for both the scaling parameter of 5.1×10-6 and power parameter of 1.14 are less than 

0.001, indicating statistical significance.  After log-transformation bias correction, the model in 

the form of Equation (2-3) is: 

 
(3) 6 1.14

, 5.1 10 ( ) 1.01Fuel pred M Rm P

      (2-9) 

The numerical value of “1.01” is the log-transformation bias correction factor.  The fuel use rates 

predicted by Equation (2-9) versus measured rates are compared and a linear regression fit is 

conducted based on Equation (2-4): 

 
(3)

, ,1.01 0.001Fuel pred Fuel measurem m   (2-10) 

Based on the fitted slope of 1.01 and intercept of 0.001 in Equation (2-10), and by substitution of 

Equation (2-9) into Equation (2-10), the predicted fuel use with bias corrections in terms of PM×R 

in the form of Equation (2-5) is: 

 
(5) 6 1.14

, 5.1 10 ( ) 1.00 ( 0.001)Fuel pred M Rm P

       (2-11) 

The numerical values of “1.00” and “0.001” are the correction factors.  Equation (2-11) is used 

for predicting fuel use rates based on PM×R for this vehicle. 
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Figure 2-7  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2005 Chevrolet Tahoe measured during 110 miles of 

driving in the Raleigh, NC area. 

 

A parity plot comparison between the Equation (2-11) predicted versus measured fuel use rates is 

shown in Figure 3-3(d), based on Equation (2-6).  The data points follow a linear trend.  The slope 

is 1 and the intercept is 0.  The standard deviation of the residuals is 0.14 mg/s, which is small 

compared to mean fuel use rates of 1.5 mg/s.  The R2 for the linear fit is 0.99.  The R2 value of 

0.99 is a significant improvement compared to the R2 value of 0.75 based on the VSP-based 

approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  There are 

some artifacts of the scatter plot that imply that the residual error may have non-constant variance 

with respect to the magnitude of fuel use rate.  For very high fuel use rate the sample size is very 

small.  Therefore, the “fit” for fuel use rates higher than about 6 g/s may not seem as “good” as for 

smaller values.  However, from a practical perspective, this model is highly effective in predicting 

fuel use rate without any average bias. 
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Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures 3-4(a), 3-4(c), and 3-4(e), respectively.  For CO, most of the data points follow a power 

trend.  A small portion of data has much higher CO emission rates compared to the fitted model.  

For this vehicle, some of the CO emission rates were relatively high, ranging up to approximately 

1,000 mg/sec.   However, CO emission rates were higher than 200 mg/sec only 0.7% of time.  

These very high emission rates are likely to be from short duration events in which the air-to-fuel 

ratio was commanded by the ECU to run fuel rich to prevent the catalytic converter from 

overheating, also known as “open-loop” operation, and thus this cluster of data is a different 

operating condition than the vast majority of the entire dataset.  A regression model based solely 

on PM×R is not able to predict this cluster of very high emitting values as a distinct emissions event 

from the main trend for over 99% of the data set.  Thus, the data are stratified.  For measured CO 

emission rates of less than 200 mg/s, the IOV model based on PM×R for CO emission rates is 

developed similarly to the model for fuel use rates.  The model in the form of Equation (2-5) is: 

 
(5) 7 1.64

, 3.0 10 ( ) 1.11 0.78CO pred M Rm P

     , R2 = 0.75 (2-12) 

The numerical values of “1.11” and “0.78” are the bias correction factors.  Both the fitted scaling 

parameter of 3.0×10-7 and the power parameter of 1.64 have p-values of less than 0.001, indicating 

statistically significance. 

For the cluster of high emitting “open-loop” data that were separated from the main data 

set, the model is: 

 
(5) 0.84

, 0.034 ( ) 2.6 640CO OL pred M Rm P     , R2 = 0.48 (2-13) 

Where: 
(5)

,CO OL predm   is the predicted CO emission rate for “open-loop” data based on Equation (2-

5).  The parity plot for this model had an R2 of 0.47 and a standard error of 220 mg/sec, which is 

approximately 49% of the mean emission rate for this stratum of data.  The model of Equation (2-

13) would be selected based on an IOV that indicates “open-loop” events.  Such IOVs are available 

internally in the ECU although they are not typically broadcast via the OBD interface.  

 

  



 

18 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

 

Figure 2-8  Relationship between emission rates and the product of Manifold Absolute Pressure 

(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and 

measured emission rates for a 2005 Chevrolet Tahoe measured during 110 miles of driving 

in the Raleigh, NC area. 

 

A comparison of Equation (2-12) predicted versus measured CO emission rates is shown in Figure 

3-4(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.83 is a significant 

improvement compared to the R2 value of 0.32 for the VSP-based model shown in Figure 3-2(b).  

The VSP model includes the high emitting portion of the data set that was excluded from the 

regression model of Equation (2-12).  However, Equation (2-13) also has a good fit and thus the 

IOV-based approach, coupled with an IOV to distinguish between closed-loop and open-loop 

control of the air-to-fuel ratio, would cover the same overall data as the VSP model.  Although the 
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scatter plot gives the impression that the fitted model may not be very good, this impression is 

somewhat misleading.  In fact, a large proportion of the data are clustered very close to the fitted 

line.  As shown in Figure 3-4(b), the 50 percent frequency range of the residuals of the parity plot 

are so close to the parity line that the upper and lower bound of this 50 percent frequency range is 

barely different than the parity line, and the 50 percent range is approximately ±4 mg/s.  This is a 

very small range compared to the mean emission rates of 30 mg/s.  The 95 percent frequency range 

is also shown.  The standard deviation of the residuals is 14 mg/s.   Thus, the high R2 of this model 

reflects that most of the predicted values are closely clustered toward the measured values.   

Figure 3-4(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be several clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  There also appear 

approximately 3 more clusters each containing a small portion of data.  Two clusters have higher 

HC emission rates than the fitted model, such as about 6 to 8 mg/s and about 4.5 to 6 mg/s at PM×R 

of 150,000 to 200,000 kPa-rev/min.  There is also a cluster of data with lower HC emission rates 

than the fitted model, such as approximately 1 to 2 mg/s at PM×R of 150,000 to 200,000 kPa-

rev/min.  Therefore, at PM×R higher than 150,000 kPa-rev/min, four clusters of data appear.  This 

vehicle has 4-gear automatic transmission.  These clusters might be associated with gear selection.  

For example, an exploration analysis is conducted for data with PM×R ranging from 150,000 to 

200,000 kPa-rev/min.  The HC emission rates are stratified into four sub-groups: from 0 to 2 mg/s, 

from 2 to 4.5 mg/s, from 4.5 to 6 mg/s, and higher than 6 mg/s.  The average values of MAP 

decrease and the average values of RPM increase for the four sub-groups with increasing HC 

emission rates.  Therefore, higher HC emission rates might be associated with higher RPM with 

lower gear.  Although stratification of these data might be possible based on additional IOVs, these 

clusters cannot be discriminated based on PM×R alone.  For all data, the fitted model is: 

 
(5) 6 1.24

, 1.1 10 ( ) 1.43 0.35HC pred M Rm P

     , R2 = 0.69 (2-14) 

The numerical values of “1.43” and “0.35” are the bias correction factors.  Both the fitted scaling 

parameter of 1.1×10-6 and the power parameter of 1.24 have p-values of less than 0.001, indicating 

statistical significance.  This R2 is sufficiently high to imply that the clusters identified above are 

not substantially compromising the mean explanatory capability of this fitted model. 

A comparison of Equation (14) predicted versus measured HC emission rates is shown in 

Figure 3-4(d).  The R2 is 0.77 and is a significant improvement compared to the R2 of 0.54 based 

on the VSP-based model, as illustrated in Figure 3-2(c).  Therefore, the IOV-based model describes 

the HC emission rates well, and is better than the EOV-based model.  The standard deviation of 

the residuals of this model is 0.71 mg/sec, which is 60 percent of the mean measured emission rate 

of 1.2 mg/sec.  The 50 percent frequency range of the residuals is very close to the parity line, 

ranging within only ±0.3 mg/sec of the predicted value.  The 95 percent frequency range of the 

residuals is also shown. 
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The relationship between measured NOx emission rates versus PM×R is illustrated in Figure 3-4(e).  

The data appear to follow a power trend.  The fitted model is: 

 
(5) 13 2.63

, 1.2 10 ( ) 1.39 0.32NOx pred M Rm P

     , R2 = 0.75 (2-15) 

The numerical values of “1.39” and “0.32” are the bias correction factors.  Both the fitted scaling 

parameter of 1.2×10-13 and the power parameter of 2.63 have p-values of less than 0.001, indicating 

statistical significance.   

A comparison of Equation (2-15) predicted and measured NOx emission rates is shown in 

Figure 3-4(f).  The R2 is 0.69, which is better than the R2 of 0.51 of the VSP-based model illustrated 

in Figure 3-2(d).  Therefore, the IOV-based model is better than the EOV-based model in 

predicting NOx emission rates.  The 50 percent frequency range of the residuals is within ±0.5 

mg/s, compared to a mean measured emission rate of 1.6 mg/sec.  The standard deviation of the 

residuals is 1.4 mg/s.  The apparent broad clustering of the scatter plot for values less than about 

8 mg/sec is a visual artifact, since scatter plots are not effective at depicting the relative frequency 

of clustering for overlapping data.  The data are in fact highly clustered around the fitted model. 

Synthesis Summary for All Vehicles 

Each of the 10 measured vehicles has been analyzed similar to the Chevrolet Tahoe demonstrated 

above.  Table 3-1 shows a synthesis summary of the coefficients of determination for the fitted 

models for IOVs versus EOVs, and for the fit between each of the IOV-based and EOV-based 

predicted rates versus measured rates for each of fuel use and emissions.   For all 10 vehicles, the 

coefficients of determination for the power regression between PM×R and VSP are 0.94 or higher.  

For all vehicles, the p-values for both the fitted scaling and power parameters are less than 0.001, 

indicating statistical significance.  Therefore, PM×R and VSP are closely related.  For negative VSP 

values, PM×R is approximately constant, but varies depending among vehicles from 32,000 kPa-

rev/min to 45,100 kPa-rev/min.   

For fuel use, the coefficients of determination for the IOV-based model predicted versus 

measured rates are 0.92 or higher.  For the EOV-based models, the coefficients of determination 

for the relationship between predicted and measured fuel use rates range from 0.53 to 0.75.  

Therefore, in predicting fuel use rates, the models using IOVs as explanatory variables perform 

better than the models using EOVs as explanatory variables.   
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Table 2-2  Coefficients of Determination (R2) for Internally Observable Variable (IOV) versus Externally Observable Variable (EOV) 

and for Each of IOV-Based and EOV-Based Model Predicted versus Measured Fuel Use and Emission Rates for 10 Measured 

Vehicles 

Vehicle 

PM×R vs. 

Positive 

VSPa 

Fuel Use CO HC NOx 

IOV  

Based  

Modelb vs.  

Measured 

EOV 

Based 

Modelc vs.  

Measured 

IOV  

Based  

Model vs.  

Measured 

EOV  

Based 

Model vs. 

Measured 

IOV 

Based  

Model vs.  

Measured 

EOV 

Based 

Model vs.  

Measured 

IOV  

Based  

Model vs.  

Measured 

EOV  

Based 

Model vs.  

Measured 

Coefficients of Determination (R2) 

2005 Mazda 6 0.98 0.97 0.61 0.15 0.09 0.58 0.35 0.04 0.08 

2008 Chevrolet 

Impala 
0.97 0.92 0.62 0.02 0.01 0.32 0.20 0.10 0.14 

2004 Pontiac 

Grand Am GT 
0.99 0.98 0.74 0.03 0.02 0.49 0.22 0.05 0.13 

2001 Volvo S40 0.99 0.97 0.66 0.13 0.11 0.001 0.10 0.30 0.27 

2009 Honda Civic 0.98 0.95 0.71 0.03 0.04 0.51 0.34 0.18 0.18 

1998 Buick 

Century 
0.94 0.99 0.53 0.05 0.13 0.10 0.15 0.39 0.22 

2002 Chevrolet 

Silverado 
0.96 0.99 0.72 0.39 0.32 0.91 0.66 0.77 0.46 

2010 Ford F150 0.95 0.99 0.68 0.06 0.03 0.67 0.43 0.24 0.16 

1998 Chevrolet 

S10 
0.97 0.98 0.68 0.04 0.03 0.23 0.10 0.26 0.20 

2005 Chevrolet 

Tahoe 
0.97 0.99 0.75 0.83 0.32 0.77 0.54 0.69 0.51 

a PM×R is the product of Manifold Absolute Pressure (MAP) and engine Revolutions Per Minute (RPM), VSP is vehicle specific power. 
b IOV based model uses PM×R as explanatory variables. 
c EOV based model uses VSP as explanatory variables. 
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For CO, the coefficients of determination for the IOV-based models range from 0.02 to 0.83, with 

substantial variability among vehicles.  For the EOV-based models, the coefficients of 

determination range from 0.01 to 0.32.  For 8 out of 10 vehicles, the IOV-based models have higher 

R2 compared to the EOV-based models, indicating that the IOV-based models would be better in 

predicting CO emission rates.  However, for 8 vehicles, the IOV-based models have R2 less than 

0.15, indicating poor fit.  One reason for this is that the measured CO concentrations are below the 

instrument detection limit for typically 40% to 80% of the 1 Hz emission rates for these vehicles.  

The high proportion of measurements below detection limit leads to random variability in the data, 

especially when the mean emission rate is associated with measured concentrations below the 

detection limit. 

For HC, the coefficients of determination for the IOV-based models range from 0.23 to 

0.91, except for a 2001 Volvo S40 and a 1998 Buick Century, for which the R2 values are 0.001 

and 0.10, respectively.  The measured HC concentrations are below the detection limit for 54% 

and 96% of time for the Volvo and the Buick, respectively.  The high proportion of data below 

detection limit leads to random variability.  For the other eight vehicles, the IOV-based models 

perform better than the EOV-based models.  

For NOx, the coefficients of determination for the IOV-based models range from 0.18 to 

0.77, except for a 2005 Mazda 6, a 2008 Chevrolet Impala, and a 2004 Pontiac Grand Am GT, for 

which the R2 values are 0.04, 0.10, and 0.05, respectively.  For the Mazda, the Chevrolet, and the 

Pontiac, 81%, 77%, and 87%, respectively, of the measured NOx concentrations are below the 

detection limit.  For the other seven vehicles, the IOV-based models have higher R2 than the EOV-

based models. 

Overall, in terms of coefficients of determination, the models using IOVs as explanatory 

variables are typically better than the modals using EOVs as explanatory variables in predicting 

fuel use and emission rates.  However, there are some limitations in the IOV-based models.  The 

models are not predicting CO, HC, and NOx emission rates as well as fuel use rates.  One reason 

is that a substantial proportion of the measured concentrations is below the detection limit, which 

leads to random variability (Sandhu and Frey, 2013).  Another reason is that the models are 

developed based on tailpipe emissions, which are also influenced by the catalytic converter.  

Though such influence has been taking into account in the Comprehensive Modal Emissions 

Model (CMEM) developed by University of California Riverside (Barth et al., 1996), future 

exploration of an IOV modeling approach that might make use of additional IOVs, such as related 

to commanded fuel rich operation or catalyst temperature can be conducted, but such exploration 

would require addition in-use measurements. 
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Conclusions 

IOV-based predictors of engine load, in particular PM×R, are highly correlated and concordant with 

EOV-based predictions, such as VSP, over a wide range of VSP.  Furthermore, they are better 

predictors of fuel use and are typically better predictors of emission rates.   

A method is demonstrated to predict fuel use and emission rates based on the use of IOVs, 

such as PM×R.  Fuel use rates can be accurately estimated using the IOV-based model based on 

PM×R, and such models performs better than models using EOVs as explanatory variables.  For 

CO, HC, and NOx emission rates, the IOV-based model typically provides similar or better 

prediction than the EOV-based model, but the goodness-of-fit is subject to substantial variability 

among vehicles.  Usually, the best fits are obtained for vehicles that have exhaust concentrations 

above the detection limit of the gas analyzer.  Thus, models for low emitting vehicles tend not to 

be as good.  However, from a policy perspective, there is typically more interest in how to identify 

and manage high emission rates.  Thus, the trade-off between detection limit and goodness-of-fit 

is not a substantial problem in that there would be less need to manage emissions from vehicles 

that have low emission rates compared to vehicles that have high emission rates.  IOV-based 

models of emission rates could be incorporated into the ECU to enable reporting feedback to 

drivers regarding their emission rates.   

The product of MAP and RPM is shown to be highly predictive of CO, HC, and NOx 

emission rates for the majority of measured vehicles.  However, the detailed evaluation of model 

goodness-of-fit also indicates that there are opportunities to extend this work to improve model 

performance by incorporating other IOVs.  For examples, IOVs related to open loop operation 

would help to explain episodic high CO emission rates.  IOVs related to the choice of gear might 

also improve explanatory power, such as for HC emission rates.  Nonetheless, models based on 

the readily available IOVs of MAP and RPM are shown to be effective in predicting fuel use with 

high precision and in predicting emission rates with high precision for emission rates above the 

gas analyzer detection limit.  The models shown here will be incorporated into a new traffic 

simulation model.  Further development of IOV-based models of emissions on a vehicle specific 

basis is recommended. 
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Appendix A. Results for Measured Vehicles 

A1 2005 Mazda 6 

For the 2005 Mazda 6, more than 12,200 seconds of valid data were collected, which account for 

more than 95 percent of raw data from the field measurements.   

A1.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-1.  Average PM×R values are 

plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-1(b):  

 
0.3958700M R VSPP   , for VSP>0, R2 = 0.98   (A1-1) 

PM×R is 45,000 kPa-rev/min for negative VSP, and is corrected to no less than 45,000 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 58,700 and power 

parameter of 0.39 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A1.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

2(a) through A-2(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.61, 0.09, 0.35, and 0.08, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-1  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2005 Mazda 6. Error bars 

indicate 95 percent confidence intervals. 

 

 

Figure A-2  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2005 Mazda 6. 
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A1.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-3(a) and A-

3(b), respectively. The coefficients of determination for fuel use as a power function of MAP and 

RPM are 0.77 and 0.52, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-3(c).  The predicted fuel use with bias 

corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.09

, 3.2 10 ( ) 1.04 0.027Fuel pred M Rm P

     , R2 = 0.92                           (A1-2) 

The numerical values of “1.04” and “0.027” are the correction factors.  Equation (A1-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A1-2) predicted versus measured fuel use rates 

is shown in Figure A-3(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.13 mg/s, which is 

small compared to mean fuel use rates of 0.95 mg/s.  The R2 for the linear fit is 0.97.  The R2 

value of 0.97 is a significant improvement compared to the R2 value of 0.61 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-3  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2005 Mazda 6 measured during 110 miles of driving in 

the Raleigh, NC area. 

 

A1.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-4(a), A-4(c), and A-4(e), respectively.  For CO, most of the data points follow a power 

trend.  A small portion of data has much higher CO emission rates compared to the fitted model.  

the IOV model based on PM×R for CO emission rates is developed similarly to the model for fuel 

use rates.  The model in the form of Equation (5) is: 

(5) 7 1.27

, 3.5 10 ( ) 13 9.6CO pred M Rm P

     , R2 = 0.39                              (A1-3) 

The numerical values of “13” and “9.6” are the bias correction factors.  Both the fitted scaling 

parameter of 3.5×10-7 and the power parameter of 1.27 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A1-3) predicted versus measured CO emission rates is shown in 

Figure A-4(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.15 is 

higher compared to the R2 value of 0.09 for the VSP-based model shown in Figure A-2(b).     

Figure A-4(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  There also appear other 

clusters each containing a small portion of data.  Two clusters have lower HC emission rates than 

the fitted model, such as about 0 to 0.5 mg/s and about 0.5 to 1 mg/s at PM×R of 150,000 to 

250,000 kPa-rev/min.  This vehicle has 4-gear automatic transmission.  These clusters might be 

associated with gear selection.  Although stratification of these data might be possible based on 

additional IOVs, these clusters cannot be discriminated based on PM×R alone.  For all data, the 

fitted model is: 

(5) 6 1.13

, 1.2 10 ( ) 2.1 0.45HC pred M Rm P

     , R2 = 0.50                                (A1-4) 

The numerical values of “2.1” and “0.45” are the bias correction factors.  Both the fitted scaling 

parameter of 1.2×10-6 and the power parameter of 1.13 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A1-4) predicted versus measured HC emission rates is shown in 

Figure A-4(d).  The R2 is 0.58 and is a significant improvement compared to the R2 of 0.35 based 

on the VSP-based model, as illustrated in Figure A-2(c).  Therefore, the IOV-based model 

describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

4(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 6 0.97

, 1.0 10 ( ) 181 13NOx pred M Rm P

     , R2 = 0.17                          (A1-5) 

The numerical values of “181” and “13” are the bias correction factors.  Both the fitted scaling 

parameter of 1.0×10-6 and the power parameter of 0.97 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A1-5) predicted and measured NOx emission rates is shown in Figure 

A-4(f).  The R2 is 0.05, which is slightly lower than the R2 of 0.08 of the VSP-based model 

illustrated in Figure A-2(d).  Both the IOV- and EOV- based models are not well explaining the 

variation in NOx emission rates.     
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Figure A-4  Relationship between emission rates and the product of Manifold Absolute Pressure 

(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and 

measured emission rates for a 2005 Mazda 6 measured during 110 miles of driving in the 

Raleigh, NC area. 
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A2 2008 Chevrolet Impala 

For the 2008 Chevrolet Impala, more than 11,500 seconds of valid data were collected, which 

account for more than 98 percent of raw data from the field measurements.   

A2.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-5.  Average PM×R values are 

plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A5(b):  

 
0.4200448M R VSPP   , for VSP>0, R2 = 0.97   (A2-1) 

PM×R is 40,000 kPa-rev/min for negative VSP, and is corrected to no less than 40,000 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 44,800 and power 

parameter of 0.42 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A2.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

6(a) through A-6(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.62, 0.01, 0.20, and 0.14, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-5  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2008 Chevrolet Impala. Error 

bars indicate 95 percent confidence intervals. 

 

 

Figure A-6  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2008 Chevrolet Impala. 
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A2.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-7(a) and A-

7(b), respectively. The coefficients of determination for fuel use as a power function of MAP and 

RPM are 0.84 and 0.71, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-7(c).  The predicted fuel use with bias 

corrections in terms of PM×R in the form of Equation (5) is:    

(5) 5 0.94

, 2.6 10 ( ) 1.18 0.18Fuel pred M Rm P

     , R2 = 0.95                           (A2-2) 

The numerical values of “1.18” and “0.18” are the correction factors.  Equation (A2-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A2-2) predicted versus measured fuel use rates 

is shown in Figure A7(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.23 mg/s, which is 

small compared to mean fuel use rates of 1.2 mg/s.  The R2 for the linear fit is 0.92.  The R2 

value of 0.92 is a significant improvement compared to the R2 value of 0.62 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-7  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2008 Chevrolet Impala measured during 110 miles of 

driving in the Raleigh, NC area. 

 

A2.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-8(a), A-8(c), and A-8(e), respectively.  For CO, most of the data points follow a power 

trend.  A small portion of data has much higher CO emission rates compared to the fitted model.  

the IOV model based on PM×R for CO emission rates is developed similarly to the model for fuel 

use rates.  The model in the form of Equation (5) is: 

(5) 4 0.70

, 8.5 10 ( ) 370 87CO pred M Rm P

     , R2 = 0.05                              (A2-3) 

The numerical values of “370” and “87” are the bias correction factors.  Both the fitted scaling 

parameter of 8.5×10-4 and the power parameter of 0.70 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A2-3) predicted versus measured CO emission rates is shown in 

Figure A-8(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.02 is 

similar compared to the R2 value of 0.01 for the VSP-based model shown in Figure A-6(b).  Both 

the IOV- and EOV- based models are not well explaining the variation in CO emission rates   

Figure A-8(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  For all data, the fitted model 

is: 

(5) 6 0.99

, 1.8 10 ( ) 4.6 0.46HC pred M Rm P

     , R2 = 0.39                                (A2-4) 

The numerical values of “4.6” and “0.46” are the bias correction factors.  Both the fitted scaling 

parameter of 1.8×10-6 and the power parameter of 0.99 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A2-4) predicted versus measured HC emission rates is shown in 

Figure A-8(d).  The R2 is 0.32 and is a significant improvement compared to the R2 of 0.20 based 

on the VSP-based model, as illustrated in Figure A-6(c).  Therefore, the IOV-based model 

describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

8(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 8 1.46

, 1.3 10 ( ) 43 11NOx pred M Rm P

     , R2 = 0.23                          (A2-5) 

The numerical values of “43” and “11” are the bias correction factors.  Both the fitted scaling 

parameter of 1.3×10-8 and the power parameter of 1.46 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A2-5) predicted and measured NOx emission rates is shown in Figure 

A-8(f).  The R2 is 0.10, which is slightly lower than the R2 of 0.14 of the VSP-based model 

illustrated in Figure A-6(d).  Both the IOV- and EOV- based models are not well explaining the 

variation in NOx emission rates.     
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Figure A-8  Relationship between emission rates and the product of Manifold Absolute Pressure 

(MAP) and engine Revolutions Per Minute (RPM) and comparison between predicted and 

measured emission rates for a 2008 Chevrolet Impala measured during 110 miles of driving 

in the Raleigh, NC area. 
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A3 2004 Pontiac Grand Am GT 

For the 2004 Pontiac Grand Am GT, more than 13,400 seconds of valid data were collected, 

which account for more than 96 percent of raw data from the field measurements.   

A3.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-9.  Average PM×R values are 

plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-9(b):  

 0.4244300M R VSPP   , for VSP>0, R2 = 0.99   (A3-1) 

PM×R is 36,300 kPa-rev/min for negative VSP, and is corrected to no less than 36,300 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 44,300 and power 

parameter of 0.42 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A3.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

10(a) through A-10(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.74, 0.02, 0.22, and 0.13, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-9  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2004 Pontiac Grand Am GT. 

Error bars indicate 95 percent confidence intervals. 

 

 

Figure A-10  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2004 Pontiac Grand Am GT. 
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A3.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-11(a) and 

A-11(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.69 and 0.79, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-11(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:   

(5) 6 1.09

, 4.5 10 ( ) 1.03 0.027Fuel pred M Rm P

     , R2 = 0.98                           (A3-2) 

The numerical values of “1.03” and “0.027” are the correction factors.  Equation (A3-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A3-2) predicted versus measured fuel use rates 

is shown in Figure A-11(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.12 mg/s, which is 

small compared to mean fuel use rates of 0.94 mg/s.  The R2 for the linear fit is 0.98.  The R2 

value of 0.98 is a significant improvement compared to the R2 value of 0.74 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-11  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2005 Mazda 6 measured during 110 miles of driving in 

the Raleigh, NC area. 

 

A3.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-12(a), A-12(c), and A-12(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 6 1.15

, 1.3 10 ( ) 92 57CO pred M Rm P

     , R2 = 0.38                              (A3-3) 

The numerical values of “92” and “57” are the bias correction factors.  Both the fitted scaling 

parameter of 1.3×10-6 and the power parameter of 1.15 have p-values of less than 0.001, 

indicating statistically significance.     



 

42 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

A comparison of Equation (A3-3) predicted versus measured CO emission rates is shown in 

Figure A-12(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.03 is 

similar compared to the R2 value of 0.02 for the VSP-based model shown in Figure A-12(b).    

Both the IOV- and EOV-based models are not well predicting the CO emission rates. 

Figure A-12(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  There also appear other 

clusters each containing a small portion of data.  Two clusters have higher HC emission rates 

than the fitted model, such as about 2 to 4 mg/s and about 1 to 3 mg/s at PM×R of 100,000 to 

200,000 kPa-rev/min.  This vehicle has 4-gear automatic transmission.  These clusters might be 

associated with gear selection.  Although stratification of these data might be possible based on 

additional IOVs, these clusters cannot be discriminated based on PM×R alone.  For all data, the 

fitted model is: 

(5) 6 0.97

, 5.7 10 ( ) 2.9 0.44HC pred M Rm P

     , R2 = 0.37                                (A3-4) 

The numerical values of “2.9” and “0.44” are the bias correction factors.  Both the fitted scaling 

parameter of 5.7×10-6 and the power parameter of 0.97 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A3-4) predicted versus measured HC emission rates is shown in 

Figure A-12(d).  The R2 is 0.49 and is a significant improvement compared to the R2 of 0.22 

based on the VSP-based model, as illustrated in Figure A-10(c).  Therefore, the IOV-based 

model describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

12(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 9 1.51

, 2.5 10 ( ) 69 5.9NOx pred M Rm P

     , R2 = 0.36                          (A3-5) 

The numerical values of “69” and “5.9” are the bias correction factors.  Both the fitted scaling 

parameter of 2.4×10-9 and the power parameter of 1.51 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A3-5) predicted and measured NOx emission rates is shown in Figure 

A-12(f).  The R2 is 0.05, which is slightly lower than the R2 of 0.13 of the VSP-based model 

illustrated in Figure A-10(d).  Both the IOV- and EOV- based models are not well explaining the 

variation in NOx emission rates.     
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Figure A-12  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 2004 Pontiac Grand Am GT measured during 

110 miles of driving in the Raleigh, NC area. 
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A4 2001 Volvo S40 

For the 2001 Volvo S40, more than 13,000 seconds of valid data were collected, which account 

for more than 99 percent of raw data from the field measurements.   

A4.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-13.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-13(b):  

 
0.3759900M R VSPP   , for VSP>0, R2 = 0.99   (A4-1) 

PM×R is 45,400 kPa-rev/min for negative VSP, and is corrected to no less than 45,400 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 59,900 and power 

parameter of 0.37 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A4.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

14(a) through A-14(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.66, 0.11, 0.10, and 0.27, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-13  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2001 Volvo S40. Error bars 

indicate 95 percent confidence intervals. 

 

 

Figure A-14  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2001 Volvo S40. 
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A4.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-15(a) and 

A-15(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.74 and 0.55, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-15(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.11

, 2.6 10 ( ) 1.08 0.027Fuel pred M Rm P

     , R2 = 0.95                           (A4-2) 

The numerical values of “1.08” and “0.027” are the correction factors.  Equation (A4-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A4-2) predicted versus measured fuel use rates 

is shown in Figure A-15(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.12 mg/s, which is 

small compared to mean fuel use rates of 0.89 mg/s.  The R2 for the linear fit is 0.97.  The R2 

value of 0.97 is a significant improvement compared to the R2 value of 0.66 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 

 

  



 

47 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

 

Figure A-15  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2001 Volvo S40 measured during 110 miles of driving 

in the Raleigh, NC area. 

 

A4.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-16(a), A-16(c), and A-16(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 7 1.49

, 4.6 10 ( ) 11 119CO pred M Rm P

     , R2 = 0.30                              (A4-3) 

The numerical values of “11” and “119” are the bias correction factors.  Both the fitted scaling 

parameter of 4.6×10-7 and the power parameter of 1.49 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A4-3) predicted versus measured CO emission rates is shown in 

Figure A-16(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.13 is 

slightly higher compared to the R2 value of 0.11 for the VSP-based model shown in Figure A-

14(b).     

Figure A-16(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  Although stratification of 

these data might be possible based on additional IOVs, these clusters cannot be discriminated 

based on PM×R alone.  For all data, the fitted model is: 

(5) 0.03

, 0.30 ( ) 6100 1320HC pred M Rm P 

    , R2 = 0.0003                                (A4-4) 

The numerical values of “6,100” and “1,320” are the bias correction factors.  Both the fitted 

scaling parameter of 0.30 and the power parameter of -0.03 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A4-4) predicted versus measured HC emission rates is shown in 

Figure A-16(d).  The R2 is 0.0.001 and is lower compared to the R2 of 0.10 based on the VSP-

based model, as illustrated in Figure A-14(c).  Both the IOV- and EOV-based models are not 

well predicting the HC emission rates.    

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

16(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 12 2.2

, 6.1 10 ( ) 11 6.8NOx pred M Rm P

     , R2 = 0.39                          (A4-5) 

The numerical values of “11” and “6.8” are the bias correction factors.  Both the fitted scaling 

parameter of 6.1×10-12 and the power parameter of 2.2 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A4-5) predicted and measured NOx emission rates is shown in Figure 

A-16(f).  The R2 is 0.30, which is slightly higher than the R2 of 0.27 of the VSP-based model 

illustrated in Figure A-14(d).  Therefore, the IOV-based model is better than the EOV-based 

model in predicting NOx emission rates. 
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Figure A-16  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 2001 Volvo S40 measured during 110 miles of 

driving in the Raleigh, NC area. 

  



 

50 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

A5 2009 Honda Civic 

For the 2009 Honda Civic, more than 12,100 seconds of valid data were collected, which account 

for more than 97 percent of raw data from the field measurements.   

A5.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-17.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-17(b):  

 
0.4359100M R VSPP   , for VSP>0, R2 = 0.98   (A5-1) 

PM×R is 37,800 kPa-rev/min for negative VSP, and is corrected to no less than 37,800 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 59,100 and power 

parameter of 0.43 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A5.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

18(a) through A-18(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.71, 0.04, 0.34, and 0.18, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-17  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2009 Honda Civic. Error bars 

indicate 95 percent confidence intervals. 

 

 

Figure A-18  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2009 Honda Civic. 
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A5.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-19(a) and 

A-19(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.83 and 0.61, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-19(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.07

, 3.6 10 ( ) 1.13 0.087Fuel pred M Rm P

     , R2 = 0.91                           (A5-2) 

The numerical values of “1.13” and “0.087” are the correction factors.  Equation (A5-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A5-2) predicted versus measured fuel use rates 

is shown in Figure A-19(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.17 mg/s, which is 

small compared to mean fuel use rates of 0.78 mg/s.  The R2 for the linear fit is 0.95.  The R2 

value of 0.95 is a significant improvement compared to the R2 value of 0.71 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-19  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2009 Honda Civic measured during 110 miles of driving 

in the Raleigh, NC area. 

 

A5.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-20(a), A-20(c), and A-20(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 5 0.90

, 2.1 10 ( ) 1200 710CO pred M Rm P

     , R2 = 0.23                              (A5-3) 

The numerical values of “1,200” and “710” are the bias correction factors.  Both the fitted 

scaling parameter of 2.1×10-5 and the power parameter of 0.90 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A5-3) predicted versus measured CO emission rates is shown in 

Figure A-20(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.03 is 

similar compared to the R2 value of 0.04 for the VSP-based model shown in Figure A-18(b).  

Both the IOV- and EOV-based models are not well predicting the CO emission rates.   

Figure A-20(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  There also appear another 

cluster containing a small portion of data, which have higher HC emission rates than the fitted 

model, such as about 1 to 2 mg/s at PM×R of 150,000 to 300,000 kPa-rev/min.  This vehicle has 4-

gear automatic transmission.  These clusters might be associated with gear selection.  Although 

stratification of these data might be possible based on additional IOVs, these clusters cannot be 

discriminated based on PM×R alone.  For all data, the fitted model is: 

(5) 6 0.97

, 3.1 10 ( ) 2.6 0.28HC pred M Rm P

     , R2 = 0.74                                (A5-4) 

The numerical values of “2.6” and “0.28” are the bias correction factors.  Both the fitted scaling 

parameter of 3.1×10-6 and the power parameter of 0.97 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A5-4) predicted versus measured HC emission rates is shown in 

Figure A-20(d).  The R2 is 0.51 and is a significant improvement compared to the R2 of 0.34 

based on the VSP-based model, as illustrated in Figure A-18(c).  Therefore, the IOV-based 

model describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

20(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 9 1.55

, 3.1 10 ( ) 20 4.1NOx pred M Rm P

     , R2 = 0.41                         (A5-5) 

The numerical values of “20” and “4.1” are the bias correction factors.  Both the fitted scaling 

parameter of 3.1×10-9 and the power parameter of 1.55 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A5-5) predicted and measured NOx emission rates is shown in Figure 

A-20(f).  The R2 is 0.18, which is the same as the R2 of 0.18 of the VSP-based model illustrated 

in Figure A-18(d).     
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Figure A-20  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 2009 Honda Civic measured during 110 miles 

of driving in the Raleigh, NC area. 
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A6 1998 Buick Century 

For the 1998 Buick Century, more than 12,900 seconds of valid data were collected, which 

account for more than 99 percent of raw data from the field measurements.   

A6.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-21.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-21(b):  

 
0.3555200M R VSPP   , for VSP>0, R2 = 0.94   (A6-1) 

PM×R is 43,600 kPa-rev/min for negative VSP, and is corrected to no less than 43,600 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 55,200 and power 

parameter of 0.35 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A6.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

22(a) through A-22(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.53, 0.13, 0.15, and 0.22, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-21  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 1998 Buick Century. Error 

bars indicate 95 percent confidence intervals. 

 

 

Figure A-22  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 1998 Buick Century. 
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A6.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-23(a) and 

A-23(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.75 and 0.79, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-23(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.19

, 1.4 10 ( ) 1.02 0.012Fuel pred M Rm P

     , R2 = 0.99                           (A6-2) 

The numerical values of “1.02” and “0.012” are the correction factors.  Equation (A6-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A6-2) predicted versus measured fuel use rates 

is shown in Figure A-23(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.10 mg/s, which is 

small compared to mean fuel use rates of 1.0 mg/s.  The R2 for the linear fit is 0.99.  The R2 

value of 0.99 is a significant improvement compared to the R2 value of 0.53 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-23  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 1998 Buick Century measured during 110 miles of 

driving in the Raleigh, NC area. 

 

A6.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-24(a), A-24(c), and A-24(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 4 0.79

, 1.3 10 ( ) 1550 1270CO pred M Rm P

     , R2 = 0.11                              (A6-3) 

The numerical values of “1,550” and “1,270” are the bias correction factors.  Both the fitted 

scaling parameter of 1.3×10-4 and the power parameter of 0.79 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A6-3) predicted versus measured CO emission rates is shown in 

Figure A-24(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.05 is 

lower compared to the R2 value of 0.13 for the VSP-based model shown in Figure A-22(b).  Both 

the IOV- and EOV-based models are not well predicting the CO emission rates.     

Figure A-24(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 2 mg/s follow a power trend versus PM×R.  For all data, the fitted model 

is: 

(5) 7 1.11

, 1.4 10 ( ) 51 1.9HC pred M Rm P

     , R2 = 0.36                                (A6-4) 

The numerical values of “51” and “1.9” are the bias correction factors.  Both the fitted scaling 

parameter of 1.4×10-7 and the power parameter of 1.11 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A6-4) predicted versus measured HC emission rates is shown in 

Figure A-24(d).  The R2 is 0.10 and is lower compared to the R2 of 0.15 based on the VSP-based 

model, as illustrated in Figure A-22(c).  Both the IOV- and EOV-based models are not well 

predicting the HC emission rates.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

24(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 14 2.83

, 1.2 10 ( ) 4.2 5.8NOx pred M Rm P

     , R2 = 0.61                          (A6-5) 

The numerical values of “4.2” and “5.8” are the bias correction factors.  Both the fitted scaling 

parameter of 1.2×10-14 and the power parameter of 2.83 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A6-5) predicted and measured NOx emission rates is shown in Figure 

A-24(f).  The R2 is 0.39, which is slightly higher than the R2 of 0.22 of the VSP-based model 

illustrated in Figure A-22(d).  Therefore, the IOV-based model is better than the EOV-based 

model in predicting NOx emission rates.   
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Figure A-24  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 1998 Buick Century measured during 110 miles 

of driving in the Raleigh, NC area. 
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A7 2002 Chevrolet Silverado 

For the 2002 Chevrolet Silverado, more than 12,800 seconds of valid data were collected, which 

account for more than 96 percent of raw data from the field measurements.   

A7.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-25.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-25(b):  

 
0.4437900M R VSPP   , for VSP>0, R2 = 0.96   (A7-1) 

PM×R is 34,400 kPa-rev/min for negative VSP, and is corrected to no less than 34,400 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 37,900 and power 

parameter of 0.44 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A7.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

26(a) through A-26(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.72, 0.32, 0.66, and 0.46, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-25  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2002 Chevrolet Silverado. 

Error bars indicate 95 percent confidence intervals. 

 

 

Figure A-26  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2002 Chevrolet Silverado. 
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A7.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-27(a) and 

A-27(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.68 and 0.70, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-27(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.11

, 6.1 10 ( ) 1.04 0.031Fuel pred M Rm P

     , R2 = 0.99                           (A7-2) 

The numerical values of “1.04” and “0.031” are the correction factors.  Equation (A7-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A7-2) predicted versus measured fuel use rates 

is shown in Figure A-27(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.07 mg/s, which is 

small compared to mean fuel use rates of 1.4 mg/s.  The R2 for the linear fit is 0.99.  The R2 

value of 0.99 is a significant improvement compared to the R2 value of 0.72 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-27  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2002 Chevrolet Silverado measured during 110 miles of 

driving in the Raleigh, NC area. 

 

A7.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-28(a), A-28(c), and A-28(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 11 1.78

, 1.3 10 ( ) 2.4 0.008CO pred M Rm P

     , R2 = 0.68                              (A7-3) 

The numerical values of “2.4” and “0.008” are the bias correction factors.  Both the fitted scaling 

parameter of 1.3×10-11 and the power parameter of 1.78 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A7-3) predicted versus measured CO emission rates is shown in 

Figure A-28(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.39 is 

higher compared to the R2 value of 0.32 for the VSP-based model shown in Figure A-26(b).     

Figure A-28(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 0.01 mg/s follow a power trend versus PM×R.  There also appear other 

clusters each containing a small portion of data.  This vehicle has 4-gear automatic transmission.  

These clusters might be associated with gear selection.  Although stratification of these data 

might be possible based on additional IOVs, these clusters cannot be discriminated based on 

PM×R alone.  For all data, the fitted model is: 

(5) 9 1.13

, 5.9 10 ( ) 1.2 0.0002HC pred M Rm P

     , R2 = 0.87                                (A7-4) 

The numerical values of “1.2” and “0.0002” are the bias correction factors.  Both the fitted 

scaling parameter of 5.9×10-9 and the power parameter of 1.13 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A7-4) predicted versus measured HC emission rates is shown in 

Figure A-28(d).  The R2 is 0.91 and is a significant improvement compared to the R2 of 0.66 

based on the VSP-based model, as illustrated in Figure A-26(c).  Therefore, the IOV-based 

model describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

28(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 17 2.73

, 9.5 10 ( ) 1.6 0.0015NOx pred M Rm P

     , R2 = 0.78                          (A7-5) 

The numerical values of “1.6” and “0.0015” are the bias correction factors.  Both the fitted 

scaling parameter of 9.5×10-17 and the power parameter of 2.73 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A7-5) predicted and measured NOx emission rates is shown in Figure 

A-28(f).  The R2 is 0.77, which is higher than the R2 of 0.46 of the VSP-based model illustrated 

in Figure A-26(d).  Therefore, the IOV-based model is better than the EOV-based model in 

predicting NOx emission rates.   
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Figure A-28  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 2002 Chevrolet Silverado measured during 110 

miles of driving in the Raleigh, NC area. 
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A8 2010 Ford F150 

For the 2010 Ford F150, more than 12,100 seconds of valid data were collected, which account 

for more than 96 percent of raw data from the field measurements.   

A8.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-29.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-29(b):  

 
0.4436600M R VSPP   , for VSP>0, R2 = 0.95   (A8-1) 

PM×R is 32,100 kPa-rev/min for negative VSP, and is corrected to no less than 32,100 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 36,600 and power 

parameter of 0.44 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A8.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

30(a) through A-30(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.68, 0.03, 0.43, and 0.16, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   
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Figure A-29  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 2010 Ford F150. Error bars 

indicate 95 percent confidence intervals. 

 

 

Figure A-30  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 2010 Ford F150. 
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A8.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-31(a) and 

A-31(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.86 and 0.69, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-31(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.17

, 3.8 10 ( ) 0.99 ( 0.022)Fuel pred M Rm P

      , R2 = 0.99                           (A8-2) 

The numerical values of “0.99” and “-0.022” are the correction factors.  Equation (A8-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A8-2) predicted versus measured fuel use rates 

is shown in Figure A-31(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.18 mg/s, which is 

small compared to mean fuel use rates of 1.8 mg/s.  The R2 for the linear fit is 0.99.  The R2 

value of 0.99 is a significant improvement compared to the R2 value of 0.68 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-31  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 2010 Ford F150 measured during 110 miles of driving 

in the Raleigh, NC area. 

 

A8.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-32(a), A-32(c), and A-32(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 6 1.29

, 1.4 10 ( ) 144 405CO pred M Rm P

     , R2 = 0.48                              (A8-3) 

The numerical values of “144” and “405” are the bias correction factors.  Both the fitted scaling 

parameter of 1.4×10-6 and the power parameter of 1.29 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A8-3) predicted versus measured CO emission rates is shown in 

Figure A-32(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.06 is 

slightly higher compared to the R2 value of 0.03 for the VSP-based model shown in Figure A-

30(b).     

Figure A-32(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 6 mg/s follow a power trend versus PM×R.  There also appear other 

clusters each containing a small portion of data.  This vehicle has 4-gear automatic transmission.  

These clusters might be associated with gear selection.  Although stratification of these data 

might be possible based on additional IOVs, these clusters cannot be discriminated based on 

PM×R alone.  For all data, the fitted model is: 

(5) 6 1.20

, 2.0 10 ( ) 1.6 0.60HC pred M Rm P

     , R2 = 0.80                                (A8-4) 

The numerical values of “1.6” and “0.60” are the bias correction factors.  Both the fitted scaling 

parameter of 2.0×10-6 and the power parameter of 1.20 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A8-4) predicted versus measured HC emission rates is shown in 

Figure A-32(d).  The R2 is 0.67 and is a significant improvement compared to the R2 of 0.43 

based on the VSP-based model, as illustrated in Figure A-30(c).  Therefore, the IOV-based 

model describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

32(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 8 1.33

, 5.0 10 ( ) 8.4 1.1NOx pred M Rm P

     , R2 = 0.45                          (A8-5) 

The numerical values of “8.4” and “1.1” are the bias correction factors.  Both the fitted scaling 

parameter of 5.0×10-8 and the power parameter of 1.33 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A8-5) predicted and measured NOx emission rates is shown in Figure 

A-32(f).  The R2 is 0.24, which is higher than the R2 of 0.16 of the VSP-based model illustrated 

in Figure A-2(d).  Therefore, the IOV-based model is better than the EOV-based model in 

predicting NOx emission rates.   
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Figure A-32  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 2010 Ford F150 measured during 110 miles of 

driving in the Raleigh, NC area. 
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A9 1998 Chevrolet S10 

For the 1998 Chevrolet S10, more than 11,300 seconds of valid data were collected, which 

account for more than 95 percent of raw data from the field measurements.   

A9.1 Internally versus Externally Observable Variables 

The relationship between PM×R versus VSP is illustrated in Figure A-33.  Average PM×R values 

are plotted versus VSP ranging from -30 to 30 kW/ton with a 1 kW/ton interval.  This range 

accounts for over 99% of measured vehicle activity.  At negative VSP, there is no load on the 

engine and, thus, PM×R is approximately constant.  For increasing positive VSP, PM×R typically 

increases monotonically. 

A regression analysis was conducted for PM×R versus VSP for positive VSP values, as shown in 

Figure A-33(b):  

 0.3543200M R VSPP   , for VSP>0, R2 = 0.97   (A9-1) 

PM×R is 33,100 kPa-rev/min for negative VSP, and is corrected to no less than 33,100 kPa-

rev/min for positive VSP.  The p-values for the estimated scaling parameter of 43,200 and power 

parameter of 0.35 are both less than 0.001, indicating statistical significance.  PM×R is highly 

correlated with VSP.  Thus, PM×R is a good surrogate for engine power demand for this vehicle. 

A9.2 Fuel Use and Emission Rates versus Externally Observable Variables 

The VSP-based approach for predicting fuel use and emission rates is illustrated in Figures A-

34(a) through A-34(d).  For each VSP bin, there is substantial variability in fuel use and emission 

rates, as described in the box and whiskers based on the 2.5-percentile, 25-percentile, 75-

percentile, and 97.5-percentile of one second values within each VSP bin.  The R2 for fuel use 

and emissions of CO, HC, and NOx are 0.68, 0.03, 0.10, and 0.20, respectively.  Thus, VSP is 

shown to be a good basis for estimating fuel use, and is able to explain some of the variability in 

1 Hz emission rates.  Furthermore, VSP is accurate in quantifying the mean trend in these rates.   

  



 

75 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

 

Figure A-33  Measured product of Manifold Absolute Pressure (MAP) and engine Revolutions 

per Minute (RPM) versus Vehicle Specific Power (VSP) for a 1998 Chevrolet S10. Error 

bars indicate 95 percent confidence intervals. 

 

 

Figure A-34  Comparison between measured and predicted fuel use and emission rates based on 

the Vehicle Specific Power-based model for a 1998 Chevrolet S10. 
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A9.3 Fuel Use versus Internally Observable Variables 

Fuel use rates are proportional to each of MAP and RPM, as illustrated in Figures A-35(a) and 

A-35(b), respectively. The coefficients of determination for fuel use as a power function of MAP 

and RPM are 0.78 and 0.80, respectively.  The p-values for the scaling and power parameters for 

both power regressions were less than 0.001, indicating statistical significance.  Therefore, each 

of MAP and RPM can be an explanatory variable for fuel use, explaining a substantial amount of 

the variation in fuel use.   

However, although fuel use rate is influenced by each of RPM and MAP, the variability in fuel 

use rate is better explained by PM×R, as shown in Figure A-35(c).  The predicted fuel use with 

bias corrections in terms of PM×R in the form of Equation (5) is:    

(5) 6 1.15

, 3.6 10 ( ) 1.01 0.004Fuel pred M Rm P

     , R2 = 0.98                           (A9-2) 

The numerical values of “1.01” and “0.004” are the correction factors.  Equation (A9-2) is used 

for predicting fuel use rates based on PM×R for this vehicle.     

A parity plot comparison between the Equation (A9-2) predicted versus measured fuel use rates 

is shown in Figure A-35(d), based on Equation (6).  The data points follow a linear trend.  The 

slope is 1 and the intercept is 0.  The standard deviation of the residuals is 0.12 mg/s, which is 

small compared to mean fuel use rates of 1.2 mg/s.  The R2 for the linear fit is 0.98.  The R2 

value of 0.98 is a significant improvement compared to the R2 value of 0.68 based on the VSP-

based approach.  Therefore, the IOV-based model performs better than the EOV-based modal.  

There are some artifacts of the scatter plot that imply that the residual error may have non-

constant variance with respect to the magnitude of fuel use rate.  For very high fuel use rate the 

sample size is very small.  However, from a practical perspective, this model is highly effective 

in predicting fuel use rate without any average bias. 
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Figure A-35  Measured fuel use rates versus (a) Manifold Absolute Pressure (MAP) (b) engine 

Revolutions Per Minute (RPM), (c) the product of MAP and RPM, and (d) the predicted 

versus measured fuel use rates for a 1998 Chevrolet S10 measured during 110 miles of 

driving in the Raleigh, NC area. 

 

A9.4 Emission Rates versus Internally Observable Variables 

The relationships between emission rates of CO, HC, and NOx versus and PM×R are shown in 

Figures A-36(a), A-36(c), and A-36(e), respectively.  For CO, most of the data points follow a 

power trend.  A small portion of data has much higher CO emission rates compared to the fitted 

model.  the IOV model based on PM×R for CO emission rates is developed similarly to the model 

for fuel use rates.  The model in the form of Equation (5) is: 

(5) 7 1.44

, 2.7 10 ( ) 51 126CO pred M Rm P

     , R2 = 0.33                              (A9-3) 

The numerical values of “51” and “126” are the bias correction factors.  Both the fitted scaling 

parameter of 2.7×10-7 and the power parameter of 1.44 have p-values of less than 0.001, 

indicating statistically significance.     
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A comparison of Equation (A9-3) predicted versus measured CO emission rates is shown in 

Figure A-36(b).  The data fit a line with slope of 1 and the intercept of 0.  The R2 value of 0.04 is 

slightly higher compared to the R2 value of 0.03 for the VSP-based model shown in Figure A-

34(b).  Both the IOV- and EOV-based models are not well predicting the CO emission rates.   

Figure A-36(c) illustrates the relationship between measured HC emission rates versus PM×R.  

There appear to be some clusters in this scatter plot.  The majority of HC emission rates ranging 

from 0 to approximately 5 mg/s follow a power trend versus PM×R.  There also appear other 

clusters each containing a small portion of data.  This vehicle has 4-gear automatic transmission.  

These clusters might be associated with gear selection.  Although stratification of these data 

might be possible based on additional IOVs, these clusters cannot be discriminated based on 

PM×R alone.  For all data, the fitted model is: 

(5) 6 1.07

, 3.6 10 ( ) 6.0 2.2HC pred M Rm P

     , R2 = 0.30                                (A9-4) 

The numerical values of “6.0” and “2.2” are the bias correction factors.  Both the fitted scaling 

parameter of 3.6×10-6 and the power parameter of 1.07 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A9-4) predicted versus measured HC emission rates is shown in 

Figure A-36(d).  The R2 is 0.23 and is a significant improvement compared to the R2 of 0.10 

based on the VSP-based model, as illustrated in Figure A-34(c).  Therefore, the IOV-based 

model describes the HC emission rates well, and is better than the EOV-based model.   

The relationship between measured NOx emission rates versus PM×R is illustrated in Figure A-

36(e).  The data appear to follow a power trend.  The fitted model is: 

(5) 12 2.34

, 4.1 10 ( ) 6.0 5.7NOx pred M Rm P

     , R2 = 0.54                          (A9-5) 

The numerical values of “6.0” and “5.7” are the bias correction factors.  Both the fitted scaling 

parameter of 4.1×10-12 and the power parameter of 2.34 have p-values of less than 0.001, 

indicating statistical significance.   

A comparison of Equation (A9-5) predicted and measured NOx emission rates is shown in Figure 

A-36(f).  The R2 is 0.26, which is slightly higher than the R2 of 0.20 of the VSP-based model 

illustrated in Figure A-34(d).  Therefore, the IOV-based model is better than the EOV-based 

model in predicting NOx emission rates. 
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Figure A-36  Relationship between emission rates and the product of Manifold Absolute 

Pressure (MAP) and engine Revolutions Per Minute (RPM) and comparison between 

predicted and measured emission rates for a 1998 Chevrolet S10 measured during 110 miles 

of driving in the Raleigh, NC area. 
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Part III: Implementation of Vehicle-Specific Fuel Use and Emissions 

Models Based on Internally Observable Activity Data into Traffic 

Microsimulation 

Introduction 

SwashSim, a microscopic traffic simulation program, has been in development over the last few 

years, led by Dr. Washburn.  SwashSim is based on a modern programming language (C# in .NET 

Framework) and uses an object-oriented architecture.  The object-oriented architecture allows the 

simulation tool to define and model objects (e.g., vehicles, vehicle components, roadway 

segments, drivers, etc.) much like they exist in reality.  For defining the performance capabilities 

of vehicles, SwashSim includes classes (i.e., object definitions) that model the power/drivetrain 

capabilities of vehicles and determines acceleration capabilities.  This ability is key to be able to 

produce the inputs necessary for the IOV fuel and emissions estimation models. 

Vehicle Dynamics Modeling in SwashSim 

This section provides an overview of the vehicle dynamics modeling approach that was developed 

and incorporated into SwashSim.  This material can also be found in chapter 3 of “Principles of 

Highway Engineering and Traffic Analysis” (Mannering and Washburn, 2012).  The approach at 

its most basic level determines maximum acceleration through the fundamental equation relating 

tractive force to resistance forces as per 

 𝐹 = 𝑚 × 𝑎 + 𝑅𝑎 + 𝑅𝑟𝑙 + 𝑅𝑔 (3-1) 

The tractive force, F, referred to here as available tractive effort, is taken as the lesser of maximum 

tractive effort and engine-generated tractive effort.  Maximum tractive effort is a function of 

several of the vehicle’s physical characteristics (such as wheelbase, center of gravity, and weight) 

and the roadway coefficient of road adhesion.  Maximum tractive effort represents the amount of 

longitudinal force that can be accommodated by the tire-pavement interface.  Engine-generated 

tractive effort is a function of engine torque, transmission and differential gearing, and drive wheel 

radius. 

The major resistance forces are aerodynamic, rolling, and grade.  The equation for 

determining aerodynamic resistance is 

 𝑅𝑎 =
𝜌

2
× 𝐶𝐷 × 𝐴𝑓 × 𝑉 (3-2) 

where 

𝑅𝑎 = aerodynamic resistance in lb, 

𝜌 = air density in slugs/ft3, 

𝐶𝐷 = coefficient of drag (unitless), 

𝐴𝑓 = frontal area of the vehicle (projected area of the vehicle in the direction of travel) in 

ft2, and 
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𝑉 = speed of the vehicle in ft/s. 

 

The coefficient of rolling resistance for road vehicles operating on paved surfaces is approximated 

as 

 𝑓𝑟𝑙 = 0.01 × (1 +
𝑉

147
) (3-3) 

where 

𝑓𝑟𝑙 = coefficient of rolling resistance (unitless), and 

𝑉 = vehicle speed in ft/s. 

 

The rolling resistance, in lb., is simply the coefficient of rolling resistance multiplied by W cos 𝜃𝑔, 

the vehicle weight acting normal to the roadway surface.  For most highway applications 𝜃𝑔 is 

very small, so it can be assumed that cos 𝜃𝑔  = 1, giving the equation for rolling resistance (𝑅𝑟𝑙) as 

presented in Equation  𝑅𝑟𝑙 = 𝑓𝑟𝑙 × W (3-4. 

 𝑅𝑟𝑙 = 𝑓𝑟𝑙 × W (3-4) 

Grade resistance is simply the gravitational force (the component parallel to the roadway) acting 

on the vehicle.  The expression for grade resistance (𝑅𝑟𝑙) is 

 𝑅𝑔 = 𝑊 ×  𝑠𝑖𝑛 𝜃𝑔 (3-5) 

As in the development of the rolling resistance formula, highway grades are usually very small, so 

sin 𝜃𝑔  tan 𝜃𝑔.  Thus, grade resistance is calculated as 

 𝑅𝑔 ≅ 𝑊 ×  tan 𝜃𝑔 = 𝑊 × 𝐺 (3-6) 

where 

𝐺 = grade, defined as the vertical rise per some specified horizontal distance in ft/ft. 

 

Grades are generally specified as percentages for ease of understanding.  Thus a roadway that rises 

5 ft vertically per 100 ft horizontally (G = 0.05 and 𝜃𝑔 = 2.86°) is said to have a 5% grade. 

The relationship between vehicle speed and engine speed is 

 𝑉 =
2×𝜋×𝑛𝑒×(1−𝑖)

𝜀0
 (3-7) 

where 

𝑉 = vehicle speed in ft/s, 

𝑛𝑒 = engine speed in crankshaft revolutions per second, 

𝑖 = slippage of the drive axle, and 

𝜀0 = overall gear reduction ratio 

 

The overall gear reduction ratio is a function of the differential gear ratio and the transmission gear 

ratio, which is a function of the selected transmission gear for the running speed.  This equation 

can be rearranged to solve for engine speed given the current vehicle speed (if vehicle speed is 

zero, engine speed is a function of throttle input). 
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With the calculated engine speed, the torque being produced by the engine can be 

determined from the torque-engine speed relationship.  Power is the rate of engine work, expressed 

in horsepower (hp), and is related to the engine’s torque by 

 ℎ𝑝𝑒 =
2×π×𝑀e×𝑛𝑒

550
 (3-8) 

 

where 

ℎ𝑝𝑒 = engine-generated horsepower (1 horsepower equals 550 ft-lb/s), 

𝑛𝑒 = engine speed in crankshaft revolutions per second, and 

𝑀e = engine torque in ft-lb. 

 

The engine-generated tractive effort reaching the drive wheels is 

 

 𝐹𝑒 =
Me×ε0×𝑛𝑑

𝑟
 (3-9) 

where 

𝐹𝑒 = engine-generated tractive effort reaching the drive wheels in lb, 

𝑀e = engine torque in ft-lb. 

𝜀0 = overall gear reduction ratio, 

𝑛𝑑 = mechanical efficiency of the drivetrain, and 

𝑟 = radius of the drive wheels in ft. 

 

It should be noted that since torque and horsepower are directly related, if only a power-engine 

speed relationship is available, this can be converted to a torque-engine speed relationship by using 

Equation 3-8. 

For determining vehicle maximum acceleration, Equation  𝐹 = 𝑚 × 𝑎 + 𝑅𝑎 + 𝑅𝑟𝑙 + 𝑅𝑔

 (3-1 is rearranged and an additional term, 𝛾𝑚, to account for the inertia of the vehicle’s 

rotating parts that must be overcome during acceleration, is included as follows. 

 

 𝑎 =
𝐹−∑ R

𝛾𝑚×𝑚
 (3-10) 

𝛾𝑚, referred to as the mass factor, is approximated as presented in Equation 𝛾𝑚 = 1.04 +
0.0025 × ε0

2 (3-11. 

 

 𝛾𝑚 = 1.04 + 0.0025 × ε0
2 (3-11) 
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Initial Testing of SwashSim Vehicle Dynamics Modeling 

Test Vehicle 

Initial testing of the implementation of the vehicle dynamics modeling approach in SwashSim was 

done with a 2003 Honda Civic LX, a light duty passenger vehicle (pictured in Figure 3-1). 

 

 
Figure 3-1.  2003 Honda Civic LX 

 

Table 3-1 lists additional vehicle information that is needed for setting up the vehicle in SwashSim. 

 

Table 3-1.  2003 Honda Civic LX Vehicle Characteristics Data 

Dimensions 

  Height (ft) 4.59 

  Width (ft) 5.56 

  Length (ft) 14.56 

  Weight (lb) 2,474 

  Wheel Radius (ft) 1.03 
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Engine  

  4 cylinder, 1.7 L  

  Maximum Torque (lb-ft) 105 

  Maximum Power (hp) 115 

Transmission (automatic) 

  Gear Ratios 

    Gear 1 2.722 

    Gear 2 1.516 

    Gear 3 0.975 

    Gear 4 0.674 

Differential Gear Ratio 4.07 

 

Additionally, the torque/power versus engine speed relationship needs to be specified in 

SwashSim.  This relationship for the 2003 Honda Civic is shown in Figure 3-2.  Note that the 

lower (blue) curves correspond to the data collection vehicle used in this study. 

 

 
Figure 3-2.  Torque/Power – Engine Speed Curves for 2003 Honda Civic LX (E-Trailer, 2014) 
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Test Equipment 

An OBD scantool (i.e., OBDLink SX Scan© Tool (Figure 3-3) with OBDWiz© diagnostics 

software (Figure 3-4)) was used to record OBD parameters at approximately 1 Hz frequency, 

including RPM, engine load, intake manifold absolute pressure, vehicle speed and time stamp. 

 
Figure 3-3.  (a) OBDLink SX© Scan Tool cable and (b) cable attached to the OBD-II port of test 

vehicle 

 
Figure 3-4.  Screen capture of the OBDWiz© Diagnostics Software (OBDWiz© by OCTech, 

LLC, http://www.obdsoftware.net/OBDwiz.aspx) 

http://www.obdsoftware.net/OBDwiz.aspx
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Data Collection 

OBD data were collected from a section of freeway and a section of arterial.  The freeway section 

was a six-mile-long section of Interstate 75 (I-75) between the cross streets of SW Archer Road 

and NW 39th (depicted in Figure 3-5)  The posted speed limit for this section is 70 mi/h. 

 
Figure 3-5.  Aerial Photo of Freeway Section for OBD Data Collection 

The arterial section is a little over a mile in length.  It is along a section of Newberry Road (SR-

26) between the cross streets of NW 98th Street and NW 122nd Street (depicted in Figure 3-6).  

The posted speed limit is 45 mi/h. 
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Figure 3-6.  Aerial Photo of Arterial Section for OBD Data Collection 

Both test sections had an approximately 0.5% grade in the travel direction.  During the data 

collection effort, a total of 3,355 seconds of valid OBD data were collected in the field for three 

different types of driving behavior, ranging from non-aggressive, moderate, and aggressive.  This 

stratification was done in order to observe and account for these driver type differences that affect 

the internal engine variables of interest. 

Field Data Results and Analysis 

Figure 3-7 is a plot of the product of MAP x RPM versus VSP. 
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Figure 3-7.  MAP x RPM versus VSP 

Figure 3-8 is a plot of the product of MAP and RPM versus calculated engine load. 

 
Figure 3-8.  MAP x RPM versus Calculated Engine Load 
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Consistent with Frey et al. (2010), the field data support a power model fit to the MAP x RPM 

versus VSP relationship and a linear model fit to the MAP x RPM versus calculated engine load. 

A regression analysis of the data in Figure 3-7 yields the following model with an R2 value 

of 0.72. 

 𝑀𝐴𝑃 × 𝑅𝑃𝑀 =  107458 × 𝑉𝑆𝑃0.1553 (3-12) 

With VSP calculated as 

𝑉𝑆𝑃 = 0.278 × 𝑉 [0.305 × 𝑎 + 9.81 × (sin (𝑎 × tan
𝑟

100
)) + 0.132] + 0.0000065 × 𝑉3 

  (3-13) 

where 

𝑉𝑆𝑃 = Vehicle Specific Power (kw/ton) 

𝑉 = Vehicle Speed (km/h) 

𝑎 = Vehicle Acceleration (km/h/s) 

𝑟 = Roadway Grade (%) 

 

With RPM being generated in SwashSim through the vehicle dynamics equations, MAP is simply 

calculated in SwashSim as 

 𝑀𝐴𝑃 = (107458 × 𝑉𝑆𝑃0.1553) 𝑅𝑃𝑀⁄  (3-14) 

A regression analysis of the data in Figure 3-8 yields the following model with an R2 value of 0.76. 

 𝑀𝐴𝑃 × 𝑅𝑃𝑀 =  3556.4 × 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑜𝑎𝑑 −  66189 (3-15) 

The calculated engine load value is then obtained by rearranging the above equation, as follows. 

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑜𝑎𝑑 = (𝑀𝐴𝑃 × 𝑅𝑃𝑀 + 66189) 3556.4⁄  (3-16) 

 

Verification of SwashSim Implementation 

Simulation runs for a multilane highway of 1.5 miles in length were performed for varying desired 

speeds of 30 to 70 mi/h, to cover the range of speeds for both arterial and freeway conditions.  As 

Figure 3-9 and Figure 3-10 confirm, the SwashSim outputs match with the models developed from 

the field data. 
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Figure 3-9.  Comparison of Field and SwashSim MAP x RPM versus VSP Data 
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Figure 3-10.  Comparison of Field and SwashSim MAP x RPM versus Calculated Engine Load 

Data 

 

Another verification between the OBD field data and simulation results was performed to observe 

the relationship between engine RPM and vehicle speed, both of which are directly related to 

selected transmission gear.  Figure 3-11 shows these results. 
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Figure 3-11.  Comparison of Field and SwashSim Engine Speed versus Vehicle Speed 

Relationship 

 

It can be observed from Figure 3-11 that SwashSim does a very good job of replicating the 4-speed 

transmission of the OBD data collection vehicle. 

 

 

Implementation of Test Vehicles into SwashSim 

Simulation Setup 

The following figures show the various input screens used in SwashSim to specify the necessary 

inputs to facilitate the IOV-based EU&E approach. 
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Figure 3-12.  SwashSim basic descriptive information and vehicle dimensions input screen. 

The input screen shown above handles the specification of vehicle dimensions and 

classification information.  Additionally, the ID’s of the associated engine and transmission are 

specified on this screen. 

 

Figure 3-13.  SwashSim basic engine information input screen. 
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The input screen shown above handles the specification of engine information.  This screen links 

to the input screen shown below, through which the torque-engine speed relationship is specified. 

 

Figure 3-14.  SwashSim engine torque/power versus engine speed relationship input screen. 

The input screen shown below handles the specification of transmission information. 

 
Figure 3-15.  SwashSim transmission information input screen. 



 

95 
 

On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for 

Vehicle-Specific Fuel Use and Emissions Modeling – 2013-034 

The input screen shown below handles the specification of the parameter values for the 

IOV-based EU&E models discussed in Part 2 of this report. 

 

Figure 3-16.  SwashSim EU&E model parameters input screen. 

 

Test Results 

The following figures are based on fuel use and emissions output from a sample SwashSim 

simulation run.  The results are consistent with the implemented IOV-based EU&E estimation 

equations from Part 2 of this report. 
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Figure 3-17.  SwashSim sample results for fuel use rate versus MAP x RPM. 

 

 

Figure 3-18.  SwashSim sample results for NOx emissions versus MAP x RPM. 
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Figure 3-19.  SwashSim sample results for HC emissions versus MAP x RPM. 

 

 

Figure 3-20.  SwashSim sample results for CO emissions versus MAP x RPM. 
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